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The missing risks of climate change

James Rising1 ✉, Marco Tedesco2, Franziska Piontek3 & David A. Stainforth4,5

The risks of climate change are enormous, threatening the lives and livelihoods of 
millions to billions of people. The economic consequences of many of the complex 
risks associated with climate change cannot, however, currently be quantified. Here 
we argue that these unquantified, poorly understood and often deeply uncertain risks 
can and should be included in economic evaluations and decision-making processes. 
We present an overview of these unquantified risks and an ontology of them founded 
on the reasons behind their lack of robust evaluation. These consist of risks missing 
owing to delays in sharing knowledge and expertise across disciplines, spatial and 
temporal variations of climate impacts, feedbacks and interactions between risks, 
deep uncertainty in our knowledge, and currently unidentified risks. We highlight 
collaboration needs within and between the natural and social science communities 
to address these gaps. We also provide an approach for integrating assessments or 
speculations of these risks in a way that accounts for interdependencies, avoids 
double counting and makes assumptions clear. Multiple paths exist for engaging with 
these missing risks, with both model-based quantification and non-model-based 
qualitative assessments playing crucial roles. A wide range of climate impacts are 
understudied or challenging to quantify, and are missing from current evaluations of 
the climate risks to lives and livelihoods. Strong interdisciplinary collaboration and 
deeper engagement with uncertainty is needed to properly inform policymakers and 
the public about climate risks.

There is overwhelming evidence that the risks and impacts from 
increasing concentrations of greenhouse gases in the atmosphere 
are very significant, will impact nearly every aspect of human life 
and the environment, and could ultimately prove to be devastating.  
An apparent incongruity exists between the pervasiveness of antici-
pated physical changes and the relatively modest total losses often 
estimated in economic evaluations1,2. Part of the explanation for this 
mismatch comes from ‘missing risks’: the risks that are not currently 
included in economic evaluations because of their uncertainty, because 
of our limited understanding of them or because existing economic 
models do not capture them in sufficient detail.

The interplay within and between different physical and social 
systems plays a crucial role in defining when and where impacts will 
manifest themselves, and these interactions are often only poorly 
understood. This leads to large and growing uncertainty estimates and 
a wide range of incompletely understood and underestimated risks3. 
For example, the potential for climate change impacts to drive social 
discontent, dislocation and relocation, and instability and conflict, are 
all deeply uncertain, but potentially crippling.

Excluding these risks from economic assessments is equivalent to 
placing a probability of zero on their occurrence. This, clearly, is not 
the case. Similarly, the common practice of engaging with only the 
expected levels of impacts and reporting central confidence bounds 
can undermine the ability of decision-makers to engage with the actual 
range of risks. The overall consequence is an underestimation of the 
total risks of climate change. This Perspective aims to identify, classify 

and suggest ways to engage with some of the most significant risks 
that are not currently captured by socioeconomic evaluations of cli-
mate change, from both a natural perspective and a social perspective.  
As an example of how this can be achieved, we present a demonstration 
of how diverse impact estimates or assumptions can be coherently 
combined.

Background
Economic evaluations of the risks of climate change are a crucial input 
into policymaking and long-term planning processes for businesses 
and communities. Various studies have projected the costs of climate 
impacts (damages) across multiple sectors4,5, whereas integrated 
assessment models (IAMs) produce global estimates of the social 
cost of carbon6 (throughout the paper, we use the term IAM to refer 
to both benefit–cost IAMs, which incorporate damages as standard, and 
detailed-process IAMs, which traditionally focus on cost-effectiveness 
analysis of mitigation strategies, but are increasingly developed to 
integrate impact estimates). Such assessments generally intend to 
go far beyond financial risks and involve ‘non-market’ effects, such as 
losses to ecosystems and broader human well-being.

The aim in quantifying climate risks is usually to produce probabil-
ity distributions for possible impacts in quantities such as metres of 
sea-level rise, decreased biodiversity indices, people affected by cer-
tain types of event or percent losses to gross domestic product (GDP). 
Anthropogenic climate change, however, takes the climate–social 
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system into a regime never before experienced, and consequently 
robust, reliable probabilities are rarely a possibility7–9. Nevertheless, 
even scientifically founded rough estimates of such distributions are 
valuable for illuminating the characteristics of the integrated com-
plexities of the economic impacts of climate change. Indeed, even 
where no credible quantifications exist, we might still be able to set 
plausible limits.

The distributions of climate change impacts produced by economic 
models are often taken as probability distributions, but in practice they 
suffer from deep uncertainties7,10. Consequently, although models play 
a part in supporting policy, model outputs are insufficient to facilitate 
effective engagement with many risks and it is important to consider 
risks associated with climate change even when no quantifications 
exist or deep uncertainties abound.

The full range of risks from climate change is currently missing from 
economic evaluations. There are two broad reasons for this. First, a 
considerable time delay exists between the understanding of physical 
risks, the economic understanding of the implications of those risks 
and their nonlinear social feedbacks, and the incorporation of this 
understanding into economic models and analyses. Second, high levels 
of uncertainty and incomplete understanding of physical processes can 
drive scientists to be conservative in reporting them, or drive them to 
focus on central estimates.

It is helpful to distinguish five kinds of uncertainty that factor into 
economic impact uncertainty (Box 1, visualized in Fig. 1). The first 
derives from uncertainty about future socioeconomic policy scenarios 

(UC1). This scenario uncertainty will not be an important part of our 
discussion because we are concerned with informing policy choices, 
which generally involves a comparison of different socioeconomic and 
policy scenarios. The second kind refers to the parameters that describe 
the processes of the climate and social systems (UC2), such as climate 
sensitivity, elasticity of marginal utility of consumption, rate of ice loss 
from the Greenland and Antarctic ice sheets, the potential increased 
mortality related to heat and so on. Model uncertainty (UC3) arises from 
differences in how the structure of the problem is approached by dif-
ferent experts and modelling centres and the choice of computational 
and statistical parameters available for tuning. Even small differences 
in models could produce large differences in outcomes over time11  
(a proposed hawkmoth effect analogous to the butterfly effect).

Trajectory uncertainty (UC4) describes the intrinsic, aleatoric, 
uncertainty in what the future trajectory will actually be. In determin-
istic models such as global climate models (GCMs), it arises from their 
nonlinear dynamical behaviour and is referred to as ‘initial-condition 
uncertainty’7. Although IAMs typically do not have this form of chaotic 
variability, the socioeconomic system they represent is similarly non-
linear and variable, and trajectory uncertainty can be explored within 
them using stochastic representations12–14.

Finally, model inadequacy (UC5) refers to the known and unknown 
limitations in our models: their incomplete representation of processes 
that could significantly influence the outcome in the real-world system 
they are designed to represent. Acknowledging model assumptions and 
inadequacies is particularly important where quantitative models are 
aimed at informing policy decisions, and increasing model coverage 
and complexity often will not increase its relevance and accuracy15.

Although epistemologically distinct, parameter, model and trajec-
tory uncertainty (UC2–UC4) can be combined in impact evaluations, as 
they are functionally similar for decision-makers. Scientists, however, 
engage with them quite differently. Of these, parameter uncertainty is 
the most susceptible to reduction through data collection and empiri-
cal studies, although this can be a slow process. Scientific progress 
may increase or decrease model uncertainty. The sensitivity behind 
trajectory uncertainty derives from both the finest details of the start-
ing conditions16 and their large-scale, generic features17. The former 
is irreducible but the latter is, at least potentially, reducible through 
further research and better observations7. We argue that risk evalua-
tions should incorporate UC2–UC4, alongside descriptions of model 
limitations (UC5) to describe our combined uncertainty around final 
outcomes.

Decision-makers are often adept at handling uncertainty and could 
use information on both low-probability/high-damage outcomes and 
unknown-probability/high-damage outcomes. Consider, for instance, 
the sixth Intergovernmental Panel on Climate Change (IPCC) assessment 
report, which allows for up to 10% probability that climate sensitivity is 
outside the 2–5 °C range, with much of this probability reflecting the  
deep uncertainty in the upper tail of the probability distribution18,19. 
The associated risk of high levels of warming is significantly higher than 
acceptable risk levels in public health (for example, 1 in 10,000 (ref. 20)) 
and indeed uncertainty in the tail probabilities have been shown to 
have orders of magnitude impact on economic assessments of future 
welfare and therefore on the value of emissions reductions21. Even the 
possibility of a runaway greenhouse effect owing to anthropogenic cli-
mate change cannot be entirely ruled out22. Typically decision-making 
has multiple objectives, and harmful, low-probability outcomes can 
play a significant role. It is therefore important for decision-makers 
to be aware of harmful processes, even if their likelihood is unknown.  
For example, there is little basis for knowing whether climate impacts on 
GDP growth rates23 will continue into the future, but if they do, the result 
would be devastating. Furthermore, risks are sometimes excluded when 
they are not fully understood or where there is considerable variation 
in estimates (for example, health risks24). If only those risks considered 
‘likely’ (above 66% probability) in the IPCC reports are accounted for, 

Box 1

Types of within-process 
uncertainty
Within each process modelled to estimate a risk, aggregate uncertainty 
derives from various types of uncertainty in the assumptions. These are 
summarized below.

Source of 
uncertainty

Common representation Example

(UC1) Scenario 
uncertainty

Representative Concentration 
Pathways (RCPs), Shared 
Socioeconomic Pathways 
(SSPs) and Shared Policy 
Assumptions (SPAs).

Business-as-usual versus 
intended nationally 
determined contributions 
(INDC) commitments 
versus transitions 
necessary to limit warming

(UC2) Process 
parameter 
uncertainty

Probability density functions 
across process parameter 
values

The equilibrium climate 
sensitivity distribution 
used in an IAM

(UC3) Model 
uncertainty

Results from multiple 
models or perturbed physics 
explorations

GCM multi-model and 
perturbed physics77 
ensembles, Inter- 
Sectoral Impact Model 
Intercomparison Project 
(ISIMIP) impact model78 
and process-based IAM79 
intercomparisons

(UC4) 
Trajectory 
uncertainty

Multiple realizations from a 
model with perturbed initial 
conditions

Multiple model runs 
produced with individual 
GCMs or nonlinear models

(UC5) Model 
inadequacy7 
(structural 
limitations of 
our models)

Descriptions of model 
limitations

The lack of a stratosphere 
or aspects of atmospheric 
chemistry in GCM 
climate simulations. 
The lack of time- and 
temperature-dependent 
climate sensitivity or types 
of climate impact in IAMs
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a large portion of potential impacts would be erroneously given a 0% 
probability. Some of these risks are incredibly complex, with impacts 
cascading across multiple sectors and involving considerable path 
dependence (for example, biodiversity or ecosystem losses). Most 
are fraught with ‘deep uncertainty’, with scientists disagreeing on the 
basis for providing reliable estimates (for example, the potential for 
climate-driven conflict25). These challenges are not, however, insur-
mountable barriers to their inclusion in policymaking or economic 
valuations. There are opportunities to use imprecise probabilities, 

formal possibilistic approaches and informal possibilistic approaches26 
such as ‘tales of the future’, which encapsulate physically realistic and 
plausible futures focused on the aspects of the system of concern27,28.

Ontology of missing risks
Here we distinguish between five categories of currently missing risks 
and suggest potential solutions on how to start integrating them into 
current and future studies. The categories below are based on the rea-
sons behind their exclusions, and these reasons provide insight into 
how they can be engaged with in the near future.

Missing biophysical impacts
One group of missing risks arises from the calibration of the IAMs, 
which are often decades out of date29. This is true of several risks now 
considered to have high probability at current and future levels of 
warming, such as the collapse of the Atlantic Meridional Overturning 
Circulation by 2300 (assessed as likely as not)30 and abrupt permafrost 
melt by 2100 (assessed as high probability)31 (also see Supplementary 
Fig. 1). The pathway from improved understanding of a climate phe-
nomenon to its valuation in economic models can be long. It often 
requires that the understanding of relevant climate drivers reaches a 
point where the science is available beyond the climate science com-
munity, for instance, through media such as IPCC reports. As part 
of this process. biophysical modelling is often required to translate 
climate risks into physical impacts; economists need to develop an 
understanding of the response of social systems to the physical impact, 
and a welfare valuation of these responses; and the risk then needs to 
be incorporated into IAMs, computable general equilibrium models 
or other comprehensive analyses. This requires close collaboration 
between multiple disciplines32,33.

The physical impacts and population exposure for a large number of 
relevant risks have already been quantified (Supplementary Table 1). 
In some cases, a translation from impacts into welfare or monetary 
damages is readily available and these can be rapidly incorporated 
into evaluations. In other cases, credible valuations are unavailable 
(for example, biodiversity loss and natural disasters) or resilience 
and general equilibrium effects are first-order concerns (for exam-
ple, water stress and migration). In this case, considerable work is 
needed to translate biophysical risks into economic ones. Examples 
of recent developments that are not captured in economic assessments 
include exposure of populations to natural disasters34,35, the latest 
process-based impact-model intercomparisons across multiple sec-
tors36, and new statistical models of health, productivity, agriculture 
and energy37. These impact estimates represent substantial develop-
ments beyond existing representations of these risks in the IAMs38,39.

There are several possible causes for this gap, including: the disagree-
ments within the impact community over the scale of impacts; a culture 
in economics that does not encourage large-team collaboration; and, 
to some extent, limited funding available for economic model devel-
opment. The process for including these risks in the near future must 
confront multiple challenges. Economic damage assessments need 
damage functions that reflect the widest possible range of credible 
responses: recent advances in empirical damage estimates37 go in the 
right direction but face the challenges of both connecting short-term 
weather-related impacts to long-term climate ones, and incorporat-
ing the endogeneity of adaptation. One approach to this problem is 
being pioneered at the Climate Impact Lab, and tries to address both 
problems. To account for adaptation, they use observed variation in 
temperature sensitivity40. To support incorporating these results into 
economic models as functions of climate rather than weather, they 
estimate impacts under downscaled projected weather and then index 
these uncertain impacts to expected climate, which allows them to be 
emulated in models that do not have daily weather or disaggregated 
sectors41. Parallel work at the Potsdam Institute for Climate Impact 
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Fig. 1 | Compounding uncertainty in climate risks estimation. The process 
for developing risk estimates depends on several stages of analysis, with 
uncertainty compounding across stages. Distributions are shown for an 
illustrative projection of changes to death rates in New Delhi (using data from 
ref. 40). Axes are constructed so that the expected value of the distribution of 
each policy scenario is aligned across subfigures. Uncertainty in emissions 
scenarios and their associated baseline socioeconomics contributes to 
uncertainty in climate changes, local hazards, impacts and economic damages 
(including costs of adaptation). As climate risks can then affect emissions (for 
example, populations after death tolls), there are also feedbacks between these 
processes further increasing uncertainty.
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Research develops channel-specific damage functions using process 
models for use in economic models (for example, ref. 42). However, 
integration of this work into economic analyses requires that issues of 
valuation, equilibrium adjustments and double counting are resolved, 
which requires an interdisciplinary approach43.

The ability to incorporate many risks into economic evaluations 
is being undermined by difficulties in bridging the climate science, 
economics and modelling cultures. Examples include climate tipping 
points, conflict and migration, and topics from climate justice. Natural 
scientists and economic modellers struggle to find a common lan-
guage to discuss the possible consequences of climate change. Bridging 
these gaps requires the repeated, collaboration-focused convening of 
researchers engaged in all aspects of the problem.

Spatial and temporal extremes
The spatial and demographic variations in impacts has emerged as 
one of the central features of economic damages: poor and socioeco-
nomically vulnerable groups in many regions are the most exposed to 
risks5,43. IAMs often represent the world in highly aggregated terms, 
describing only global results (for example, the DICE model44) or across 
multi-national regions (for example, PAGE14, FUND45 and RICE46) and for 
representative agents. Although these variations can be parameterized 
in damage functions47 or elasticity parameters48, doing so hides the 
underlying source and consequences of climate risk.

Temporal extremes are also likely to play a significant role. Although 
impacts of climate change result from the long-term evolution of tem-
perature changes and sea-level rise, many will manifest as extreme 
shocks: heatwaves, storms and droughts. While projections of many 
natural disasters are available35,49, they are not represented in IAMs and 
reported metrics typically hide the role of variability4. See examples 
of risks arising from spatial and temporal extremes in Supplementary 
Section D.

It is a conceptual challenge to integrate the small spatial and temporal 
scales relevant for extreme events or the effects on different income 
groups and related distributional effects into the IAMs operating on 
large world regions and long timescales. Spatially detailed research 
requires simulations and data often available for only a few countries. 
Research examining the complexity of systems and potential impacts 
of climate change responses at scales ranging from individual house-
holds to national policy and global governance can help in this regard.

Traditionally, the highly aggregated approach of benefit–cost IAMs 
has supported their use in identifying climate policies that maximize 
global welfare, by relying on intertemporal optimization. Economic 
assessments of scenarios, however, do not require optimization, and 
higher-resolution economic risk assessments have been produced for 
the United States and Europe33, the consequences of tipping points50 
and country-level-scale information using empirical damage esti-
mates51. Improvements in stochastic optimization techniques also 
provide a pathway to increasing resolution while studying optimal 
mitigation52.

A way to better engage with these features is to improve how hetero-
geneity, variability and uncertainty are approached generally. We pro-
pose that there is an emerging way forwards for combining parameter, 
model and trajectory uncertainty, while considering model inadequacy, 
at high spatial and temporal resolution. First, impact models should be 
driven by downscaled inputs available at a monthly or higher frequency, 
over multi-decadal periods. This captures the interaction between the 
dynamic uncertainty represented by both natural variability of the 
climate system and climate change. Parameter uncertainty within  
the impact models should be represented by probability distributions over 
parameter values, simulated using Monte Carlos across multiple down-
scaled GCMs and multiple impact models, ideally drawing from initial- 
condition ensembles.

It is in addition important to improve how uncertainty is communi-
cated to policymakers. When presenting model-based information, 

we recommend separating variability from uncertainty, that is, the 
1-in-100-chance outcome for an impact conditioned on a model, along-
side how that number varies between models. Finally, model inad-
equacy needs to be stated clearly, and unmodelled risks represented 
(for example, with ember plots).

Feedback risks and interactions
Feedback processes are ubiquitous within and among the climate, 
environment and economic systems. Critical and sometimes over-
looked risks arise from the complex interplay of climate change and 
variability, demographic shifts, economic insecurity and political 
processes (Supplementary Section E). Physical risks are not inde-
pendent of each other and climate change can act as a catalyst and 
stressor that accelerates and exacerbates conditions leading to 
cascading effects in the climate system and societal tipping points 
(Fig. 2 and Supplementary Section F). Feedback processes are often 
the source of heavy-tailed distributions and are therefore closely 
linked to black-swan events (see ‘Deep uncertainty’). However, these 
interactions are often missing from analyses and thus represent a 
source of missing risks.

The complexity of feedback systems has slowed the process of both 
understanding them and modelling them. Compound, sequential, 
and concurrent extremes would lead to lower thresholds (for a single 
driver) for substantial impacts as well as deeper impacts when two driv-
ers align53. The overall lack of representation for this type of secondary 
effect leads to an underestimation of risk.

There is a need for assessment and risk management frameworks that 
better incorporate uncertainty and complex, cascading risks, including 
systems approaches built on interacting sectors, actors, geophysical 
hazards, scenarios and storylines. Approaches that utilize agent-based 
modelling and computable general equilibrium models are now being 
developed, but more effort is needed to understand their potential 
contribution in a climate change context.

An important class of feedback risks is tipping points54. Climate, 
ecological and social tipping points are transitory states of a feedback 
process beyond which a new basin of attraction will drive further sys-
tem change, resulting in a qualitatively different and self-reinforcing 
regime. A wide variety of tipping points have been incorporated into 
analyses for individual papers, but representing the full collection has 
been a challenge50.

Cascading
tipping points

Cascading
social changes

Cascading
disasters

Multiple
stressors

Climate–
environment
system

Exposure
and
sensitivityNatural

disasters

Social–
economic
system

Simultaneous
exposure/sensitivity changes

Social
outcomes

Fig. 2 | Stylized channels by which risks can interact and compound. The red 
arrows show channels of interaction. Cascading tipping points refers to the 
increased probability of one tipping point because of the triggering of 
another75. Cascading disasters can occur as natural disasters heighten the risk 
of other disasters (for example, droughts causing wildfire). With multiple 
stressors, as climate stresses proliferate, the resilience and adaptive capacity 
of populations can be sapped53. As with the climate system, cascading social 
changes can emerge, such as migration increasing the risk of conflict54. As 
populations adapt and develop, this will produce simultaneous exposure/
sensitivity changes, which may increase risks (for example, if populations 
further concentrate on coasts or along rivers).
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One barrier to research on tipping points and climatic extremes 
being incorporated into economic evaluations is that they are not well 
represented in GCMs, and their associated downscaled products. Social 
scientists look to natural scientists to provide probabilities, time evolu-
tions and gridded projections to support their work. This is not always 
possible. Ensuring that climate scientists provide results in a form that is 
both robustly justifiable and can be readily incorporated into economic 
analysis requires bringing together the two disciplines.

Deep uncertainty
Deep uncertainty describes processes for which robust probability 
distributions do not exist. For many impacts, one or more steps in the 
estimation of hazards, exposure, vulnerability and welfare suffer from 
deep uncertainty, in terms of, for instance, the extent of their impacts 
and their spatiotemporal probability or frequency (Supplementary 
Section G). In some cases, the appropriate metrics for quantification 
are unclear. Yet, they can (and should) still be factored into risk assess-
ment and planning.

One class of impacts suffering from deep uncertainty is black-swan 
events, characterized by their extreme nature and long-lasting con-
sequences55. Statistically, black-swan events are outcomes from the 
tails of heavy-tailed distributions, which are common in natural and 

human systems54,56–58. These events are difficult to predict, because 
they are so far outside of what we normally observe and often arise from 
interlinked instabilities. Because they depend on and trigger changes 
throughout their systems, each black-swan event can dramatically 
alter exposure to risks and force the need for developing new decision 
contexts. As advancing climate change places new stresses on climate 
and social systems, outcomes beyond the extremes observed within 
the historical record are increasingly possible. The high frequency 
of previously considered ‘highly improbable’ events requires their 
consideration in climate change evaluations. Some examples include 
technological breakthroughs (unforeseen dramatic efficiency gains, 
consequences of a new green revolution and so on); governance and 
geopolitical reorganization (conflict, trade blocs and so on); new cli-
mate regimes (unforeseen ocean circulation or ecosystem changes and 
so on); funding mechanisms (green development banks, subsidies to 
tip the balance towards renewables and so on); and disease outbreaks 
(coronavirus disease 2019, Ebola and so on).

Some of these deep uncertainties and black-swan events can be 
explored through scenarios. Scenarios as a combination of broad narra-
tives and quantitative projections based on models have been employed 
in climate science in the past59. It is important that climate narratives 
represent sequential and concurrent events across multiple regions 
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a z-score from nine GCMs in WorldClim76 in 2050 under SSP3-7.0, using high 
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precipitation (Drought), coefficient of variation of precipitation (Precipitation 

variation), minimum temperature of the coldest month (Chill) and maximum 
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and sectors of the global economy. The currently used Shared Socio-
economic Pathways (SSPs) cover a range of socioeconomic futures, but 
these scenarios do not necessarily capture disruptive deviations from 
the past60. To truly assess deep uncertainty, the diversity and robust-
ness of scenarios needs to receive more attention61. Computational 
techniques such as cross-impact balances can be used to systemati-
cally explore large numbers of scenarios and the coverage of scenarios 
space. Alternatively, the vulnerability of a (policy) strategy to disrup-
tions can be studied. A number of projects have built on a storyline 
approach27,28,62–64. Speculative storylines can begin an iterative process 
whereby global and regional modelling exercises and storyline refine-
ments can offer insights.

It is noted that assessments of model uncertainty in multi-model 
intercomparisons and perturbed physics and parameter studies can-
not provide robust probabilities owing to the shared features across 
models, their limited exploration of possibilities and the conceptual 
lack of any basis for defining the shape of ‘model space’ across which 
probabilities must be built7. Nevertheless, the uncertainty derived from 
such ensembles represents a starting point for consideration of deep 
uncertainty. Example applications include model evaluation with his-
torical data and developing multi-sector, multi-model projections65–67.

A similar process of reflection on deep uncertainties should be initi-
ated with IAMs (and other models capturing impacts) and the economic 
damage integration process in general. Although IAMs have been inter-
compared in the past, a concerted intercomparison project would have 
a much broader focus on consideration of the implications of what is 
missing or inadequately incorporated at present.

Unidentified risks
Finally, it is appropriate to recognize a further set of risks completely 
unidentified in the academic literature. The coupled global environ-
mental–human system can be disrupted in many ways that are unex-
pected or have not been studied. We take for granted many of the ways 
that the environment currently supports human needs, and not all of 
these functions are known, much less their sensitivity to climate change. 
Populations may respond to changes in their environments in unpre-
dictable ways, driving social movements that take on a life of their own.

As these risks are fully unknown and unquantified, we cannot directly 
include them in valuations, but we can still factor unidentified risks 
into decision-making. Approaches exist for doing so. First, we could 
consider a precautionary principle, arguing that we might want to 
maintain the state with which we have long historical experience, even 
in the absence of clearly identified risks. The precautionary principle is 
already embedded in the Paris Agreement, and underlies the results of 
detailed-process IAMs, which identify cost-effective implementations 
of given mitigation scenarios6. We can understand the risks we face by 
comparing the future world to the range of conditions experienced 
across instrumental records (for example, see Fig. 3)68. The precaution-
ary principle would motivate pairing economic welfare calculations 
with planetary boundaries or other deviations from historical ranges69.

Second, there are normative, ethical arguments to maintain the 
natural state of the planet, out of a rights-based demand to not subject 
people to undue risks, for example70,71. The argument is that economic 
systems should conform to the values held by their stakeholders and 
that comprehensive economic evaluations should therefore account 
for infringements on the stated priorities of each community.

Third, there are results from complexity science that provide ways to 
monitor the fingerprints of risks, even if we do not know their nature72. 
These can provide early warning signals, and suggest improving resil-
ience even without clear dangers in sight.

Moving forwards
Improving our representation and understanding of the missing risks 
in economic assessments of climate change impacts is a long-term goal. 

It demands greater coordination between the climate, impact and 
economic scientific communities, better approaches for grounding 
economic projections in data, systems understanding and the latest 
climate science, and better representations of complex, interacting, 
heterogeneous systems. The different classes of missing risks described 
above each require different approaches for moving forwards.  
Furthermore, foundational work is needed to understand the basis 
for deriving robust, actionable information when combining different 
kinds of information sources to generate comprehensive assessments— 
we should avoid potentially misleading, model-sensitive data.

We can distinguish three overlapping stages in this broad agenda. 
With existing knowledge, we can already offer a better picture of the 
total risks of climate change by engaging in detailed, integrative work. 
This stage depends on collating existing knowledge, preparing bet-
ter narratives and interpreting results in the context of missing risks. 
The second stage consists of work to map out the spaces that current 
models miss and to analyse where there may be value in improving exist-
ing models or developing better non-model-based approaches. This 
stage involves improving scientific inputs into quantitative economic 
assessments, improving representations of uncertainty, and engaging 
in explorations of the potential behaviour and model intercomparisons 
of IAMs with respect to impact modelling. Finally, there is a long-term 
agenda, which requires targeted funding to support intensive engage-
ment across disciplines, model approaches and types of modelling 
experiments designed to robustly test the sensitivity of policy-relevant 
conclusions to the nonlinear consequences of the initial state, struc-
tural model error and stochastic behaviour and assumptions.

Finally, some risks have been treated as insignificant because of the 
long time horizon before they will be experienced with a measurable 
effect. Welfare losses in the future are typically discounted (reduced) 
in cost–benefit calculations. We will not address discounting in this 
paper, but we offer a few comments. First, discounting is inherently 
an ethical decision, so decision-makers should be careful about apply-
ing common conventions from the academic economic literature and 
might benefit from greater awareness of the undiscounted stream of 
damages. Second, under the risk of negative economic growth, it may 
not be economically or socially sensible to discount the future (for 
example, under Ramsey discounting73). Third, alternatives to standard 
discounting are available (for example, ref. 74), but best practices are 
needed.

Rapidly quantifying missing risks
Considerable information is available on many of the risks discussed 
in the ‘Ontology of missing risks’ section, but it is not integrated in a 
way that can lead to comprehensive quantification. Here we propose 
an illustrative general approach for combining uncertain and qualita-
tive information about an indefinite but growing collection of risks. 
The framework highlights the gaps in existing knowledge, and aims to 
rapidly lower the barrier to incorporating a large number of currently 
missing risks.

Conditional on a temperature change of ΔT, we posit that each risk i 
can be described by an imprecise and possibly subjective distribution 
of possible consequences or impacts, xi ≈ fi(ΔT), a probability distribu-
tion over possible impacts. For our purposes, we are agnostic about the 
quantification of xi, so long as the metric is consistent across all risks: for 
example, they could be in terms of percent welfare-equivalent GDP lost 
or lives negatively affected over the course of each lifespan. Suppose 
that each distribution embodies all forms of uncertainty (UC2–UC5).

We can distinguish two broad forms of interdependencies between 
individual risks. First, the drivers behind the forms of uncertainty can 
be shared, so that a high impact from one risk is correlated with a high 
impact from another. For example, damages owing to droughts and 
wildfires both depend on precipitation changes, and are likely to be 
correlated, even after accounting for temperature changes. However, 
this points to the other form of interdependence: double counting. 
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If the same area is at risk from both droughts and wildfires, damages 
from one may already be accounted for in the estimation of damages 
from the other.

We address these both using a copula approach, which simplifies 
the representation of these interdependencies, and is detailed in  
Supplementary Section A. This simple framework decomposes the 
problem of understanding the total missing risks into a series of discrete 

and cumulative steps: (1) identifying a common metric for measuring 
risks; (2) estimating or otherwise generating a probability distribution 
representing losses from each risk; (3) determining the correlation 
of uncertainty between pairs of risks; (4) determining the degree of 
double counting between pairs of risks.

Furthermore, additional risks can be incorporated without revisiting 
existing estimates, allowing the process of including more missing risks 
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Fig. 4 | Distributions of projected population at risk. a, Each panel shows the 
distribution of the portion of the global population that could be impacted by a 
risk or a combination of risks for 2 °C, 3 °C, and 4 °C warming. These represent 
some of the major missing risks discussed in the text. Each distribution is based 
on a single study, and the collection of missing risks is not comprehensive. The 
dashed lines represent the 99th percentile of the distributions. Specifics on 
how calculations are done and population impacts are determined are 

described in Supplementary Section B. b, Smooth spline representation of the 
combined population affected across all risks shown in a. Spline is fit to each 
Monte Carlo drawn value at 2 °C, 3 °C and 4 °C, and constrained to a value and 
slope of 0 and a global mean surface temperature (GMST) change of 0 °C and to 
be weakly monotonic after 4 °C. The shaded region shows the 1st–99th 
percentiles.
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Perspective
to occur in a distributed fashion. The estimates used for steps 2, 3 and 
4 may be subjective and will certainly involve deep uncertainty, but 
they allow us to better understand risks and their interactions under 
various assumptions.

As an illustrative application of this framework, we combine esti-
mates for a range of risks from recent literature, including natural 
disasters, ecosystem impacts, conflict, migration, sea-level rise, heat 
and cold mortality, and economic growth impacts (Supplementary 
Table 1). As a consistent metric across all risks, we describe the number 
of lives disrupted, in terms of the population in 2010, at various levels of 
warming. As such, the results presented here do not provide a complete 
path to incorporating these risks in economic assessments, as welfare 
losses are not quantified.

We show these risks and their combined effects in Fig. 4. The great-
est risks, in terms of central estimates for populations affected, are 
multi-sector energy risks (46% at 2 °C and 85% at 4 °C) and relative 
conflict risk (32% at 2 °C and 75% at 4 °C). However, heatwaves, produc-
tivity and water stress all have tail risks (95% quantile) of greater than 
a quarter of the global population being affected. These risks can also 
be combined into a smooth functional form, potentially applicable 
in IAM-style models (Fig. 4b). If the common metric were economic 
damages (for example, loss of GDP), the results could be used in IAMs 
in the form of a damage function.

Here we have discussed only the negative impacts incident on popula-
tions, but there are entangled positive impacts as well. Some of these 
are direct, such as increases in economic growth in some sectors and 
lives saved by milder cold winters. In addition, adaptation and migra-
tion can significantly reduce the overall risks.

Understanding the risk of 2 °C, 3 °C and 4 °C global mean surface 
temperature anomalies requires not only a reporting of the existing 
risks that models provide but also the incorporation of new classes of 
risks as well as the potential for disruptive unknown risks that could 
dramatically alter the context of future societal systems and anthropo-
genic climate change risks. It is hoped that recognition of these ‘missing 
risks’ will improve the overall level of accounting for consequences 
associated with climate change under credible warming scenarios.

Data availability
All data used here are publicly available at the sources cited in the Sup-
plementary Information.
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