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Sea level rise and flooding of hazardous sites
in marginalized communities across the
United States

Lara J. Cushing 1 , Yang Ju 2, Seigi Karasaki 3, Scott Kulp4,
Nicholas Depsky3, Alique Berberian1, Jessie Jaeger 5, Benjamin Strauss 4 &
Rachel Morello-Frosch 5,6

Sea level rise (SLR) increases the risk of flooding at coastal sites that use and
produce hazardous substances. We assess whether socially marginalized
populations in the United States are more likely to be impacted by projected
SLR-related flooding of hazardous sites that could result in contaminant
releases. We identify 5500 facilities at risk of a 1-in-100-year flood event by
2100 under a scenario of continued high greenhouse gas emissions, including
coastal power plants, sewage treatment facilities, fossil fuel infrastructure,
industrial facilities, and formerly used defense sites. Seven states (Louisiana,
Florida, New Jersey, Texas, California, New York, and Massachusetts) account
for nearly 80% of projected at-risk facilities. Controlling for population density
and county, a one standard deviation increase in the proportion of linguisti-
cally isolated households, neighborhood residents identifying as Hispanic,
households with incomes below twice the federal poverty line, households
without a vehicle, non-voters, and renters is associated with 19-41% higher
likelihood of having a site at risk of SLR-related flooding within 1 kilometer
(odds ratios [95% confidence intervals]: 1.19 [1.09, 1.31], 1.22 [1.08, 1.37], 1.27
[1.16, 1.39], 1.35 [1.21-1.51], 1.36 [1.21, 1.53], and 1.41 [1.32, 1.52], respectively).
Results elucidate the need for disaster planning, land-use decision-making, as
well asmitigation strategies that address the inequitable hazards and potential
health threats posed by SLR.

Global sea level has risen more than 11 cm over the last three
decades and that rate is accelerating1, leading to an increase in
coastal flooding due to high tides, waves, storm surge, El Niño
events and other factors. Extreme coastal flooding is projected to
more than double by 2050 across much of the world2. By 2100,
nearly all of the coastal United States (U.S.) is expected to
experience elevated water levels on a daily basis that today occur
only twice per century3, with a rapid increase in the frequency of

high tide flooding projected to begin in multiple cities during the
next decade4.

Extreme flood events result in the release of toxic substances into
the environment. For example, over 200 contaminant releases were
reported in the Texas Gulf Coast after flooding resulting from Hurri-
caneHarvey in 2017. Over 10million pounds of regulated air pollutants
were released from refineries, petrochemical, and other industrial
facilities5, and the catastrophic explosionof a chemical plant due to the
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loss of power for refrigeration necessitated the evacuation of 40,000
people6. Around the world, industrial facilities are disproportionately
located along coastlines due to the historical importance of maritime
trade to the establishment of industrial port cities, strategic access to
global trade routes for raw materials and finished products via ports,
and need for sea water for cooling and wastewater disposal. Margin-
alized racial and ethnic groups are more likely to live near hazardous
waste sites and industrial facilities, and fenceline communities are
typically subject to multiple forms of discrimination resulting in lim-
ited financial, political, and social capital to mitigate contaminant
exposures7. Moreover, longitudinal analyses show that dispropor-
tionate hazard burdens faced by racially and economically margin-
alized groups are largely due to discriminatory land-use, permitting,
and facility siting decisions8–11. Racial residential segregation and the
inequitable distribution of stormwater infrastructure further con-
tribute to racialized patterns of flood risk across U.S. cities12.

Building upon a prior California analysis13, we conducted a
nationwide equity assessment of flood risk at hazardous sites in the
U.S. due to sea level rise (SLR). We derived probabilistic estimates of
flood risk in 2050 and 2100 across an expanded range of legacy con-
tamination sites and facilities that contain, handle, produce or emit
hazardous substances. We then assessed the geographic distribution
of at-risk sites with respect to multiple present-day measures of social
marginalization, including race/ethnicity, poverty (household income
below twice the federal poverty line), voter turnout, housing tenure,
and linguistic isolation. Our objectives were to characterize inequities
in residential proximity to hazardous sites at riskof futurefloodingdue
to sea-level rise and identify communities where additional resources
are needed to prevent exposure to toxic substances and enhance cli-
mate resilience.

Results
Hazardous sites at risk of flooding
We first assessed the annual probability of at least one flood exceeding
the land elevation of over 47,646 coastal hazardous site locations
compiled from one proprietary and four publicly available adminis-
trative data sources (Supplemental Table S1). We considered all sites
within counties with land area below the 18m elevation above current
mean higher high water line across all coastal U.S. states and Puerto
Rico. We defined sites as at risk if their projected annual probabilities
exceeded 0.01 (i.e., they were threatened by a 1-in-100-year flood
event) integrated across the full distribution of SLR projections using
the law of total probability for one low (Reference Concentration
Pathway [RCP] 4.5) and one high (RCP 8.5) greenhouse gas emissions
scenario (see “Methods”).

We found that over 11% of coastal sites in our analysis are at
risk of SLR-related flooding by 2100 under the high emissions
scenario (RCP 8.5) (Table 1). Figure 1 shows the distribution of at-
risk sites by state or territory under RCP 8.5 in 2050 and 2100.
Seven states (Louisiana, Florida, New Jersey, Texas, California,
New York, and Massachusetts) account for nearly 80% of pro-
jected at-risk sites in 2100 (Fig. 1). Restricting greenhouse gas
emissions to the low emissions scenario makes little difference in
terms of the number of projected sites at risk in the near term
(2050) but would reduce the number of at-risk sites from 5500 to
5138 (a reduction of 362 or 7% of sites) in the long term (2100)
(Table 1). Oil and gas wells and industrial facilities that emit
quantities of hazardous substances that require reporting to the
U.S. Environmental Protection Agency’s Toxic Release Inventory
(hereafter “TRI sites”) make up the largest proportion of sites we
considered and sites at risk (Table 1). Under the high emissions
scenario (RCP 8.5), over a fifth of coastal sewage treatment
facilities, refineries and formerly used defense sites, roughly a
third of power plants, and over 40% fossil fuel ports and terminals
are projected to be at risk by 2100 (Table 1).

Affected communities
We next considered the distribution of at-risk sites with respect to
community demographics and indicators of social marginalization
derived from three secondary datasets: the American Community
Survey, a proprietary data source on recent voter turnout, and the
federal Climate and Economic Justice Screening Tool14. We utilized
census block groups as the geographic unit of analysis (hereafter
“neighborhoods”) and considered block groups with at least one at-
risk site located within 1 km of a populated area as being potentially
affected (see “Methods”). Given the prominence of racial discrimina-
tion as ameans of establishing andmaintaining social inequality in the
U.S.15, we considered measures of racial and ethnic makeup, as well as
indicators of socioeconomic status, civic engagement (voter turnout),
and vulnerability that relate to communities’ ability to anticipate,
mitigate, and cope with flooding, such as age, linguistic isolation (% of
households where no one 14 years or older speaks English “very well”),
and vehicle ownership.

Table 2 summarizes the population characteristics of neighbor-
hoods near versus far from hazardous sites at risk of flooding due to
SLR in 2100 under a high emissions scenario. Figure 2 shows the
increase in the likelihood of an at-risk site within 1 kmper one standard
deviation increase in each demographic and social vulnerability mea-
sure, which we estimated using logistic regression models controlling
for population density and county to minimize bias related to the
higher concentration of people of color and renters in urban areas and
demographic variation across U.S. regions.

Compared to other coastal neighborhoods, neighborhoods with
one ormore at-risk site nearby have lower voter turnout, proportions
of residents identifying as Asian/Pacific Islander, and individuals
under the age of 18, and higher present-day proportions of renters,
households living in poverty, residents identifying as Hispanic and
Black, linguistically isolated households, households without a
vehicle, single-parent households, and individuals over the age of 65
(Table 2). In the multivariable regression models, all these bivariate
associations remained statistically significant with the exception of
the proportion of Black and Asian/Pacific Islander residents (Fig. 2).
Neighborhoods designated as disadvantaged by the federal Climate
and Economic Justice Screening Tool, a nationwide composite
assessment of cumulative impact associated with multiple measures
of social vulnerability (e.g., poverty) and the presence of climatic and
environmental hazardous, had a 50% higher odds of having an at-risk
site within 1 km, compared to other coastal, non-disadvantaged
neighborhoods (odds ratio [OR] and 95% confidence interval [CI] =
1.50 [1.23, 1.83], Fig. 2). A one standard-deviation increase in the
proportion of residents over age 65, linguistically isolated house-
holds, residents identifying as Hispanic, households in poverty,
households without a vehicle, non-voters, and renters was associated
with 15–41% higher likelihood of an at-risk site within 1 km (ORs and
95% CIs shown in Fig. 2). Associations were similar when we con-
sidered the presence of at-risk sites within 3 km instead of 1 km of
neighborhoods (Supplementary Table S2).

Among neighborhoods within 1 km of an at-risk site, social mar-
ginalization was also associated with an increase in the number of at-
risk sites nearby and the severity of flood risk across those sites
(Supplementary Fig. S1). Here we quantify flood risk severity by esti-
mating the neighborhood expected annual exposure (EAE), calculated
by summing the annual probabilities of at least one flood occurring at
all hazardous sites within 1 km of populated portions of census block
groups. This expected value reflects the total number of sites likely to
be exposed to flooding in a given year—either 2050 or 2100 (see
“Methods”). Among neighborhoods with an at-risk site within 1 km, a
one standard deviation increase in the proportion of Hispanic resi-
dents, households in poverty, households without a vehicle, non-
voters, and renters was associated with a 7–13% higher number of at-
risk sites in 2100 under RCP 8.5 and a 0.10–0.21 unit increase in EAE
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Table 1 | Number and type of hazardous sites at risk of sea level rise-relatedflooding by greenhouse gas emission scenario and
year across the coastal U.S

Category Total number of facilities in analysis Number (%) at risk,
RCP 4.5

Number (%) at risk, RCP 8.5

2050 2100 2050 2100

Power plants (nuclear & fossil fuel) 443 84 (19.0) 125 (28.2) 85 (19.2) 134 (30.2)

Animal operations 1148 87 (7.6) 111 (9.7) 88 (7.7) 115 (10.0)

Sewage treatment facilities 2582 379 (14.7) 525 (20.3) 384 (14.9) 564 (21.8)

Hazardous waste treatment & disposal 515 44 (8.5) 68 (13.2) 46 (8.9) 74 (14.4)

Other industrial facilities (Toxic Release Inventory) 15,222 1049 (6.9) 1679 (11.0) 1073 (7.0) 1870 (12.3)

Solid waste landfills & incinerators 948 50 (5.3) 79 (8.3) 51 (5.4) 90 (9.5)

Cleanup sites & sites with radioactive material 604 64 (10.6) 100 (16.6) 66 (10.9) 111 (18.4)

Refineries 67 9 (13.4) 14 (20.9) 9 (13.4) 16 (23.9)

Fossil fuel ports and terminals 663 196 (29.6) 275 (41.5) 199 (30.0) 293 (44.2)

Active oil & gas wells 24,095 1592 (6.6) 1895 (7.9) 1597 (6.6) 1944 (8.1)

Formerly used defense sites 1359 186 (13.7) 267 (19.6) 190 (14.0) 289 (21.3)

Total 47,646 3740 (7.8) 5138 (10.8) 3788 (8.0) 5500 (11.5)
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Fig. 1 | Number of sites at risk of flooding due to sea level rise in (left) 2050 and
(right) 2100 under a high emissions scenario (RCP 8.5) by state and type. States
are shaded by the total number of at-risk sites, with darker colors representing a

higher number of sites at risk (maps). The number of sites at risk in each state is
broken down by type, with each facility type represented by a unique color
(bar chart).
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(see Incidence Rate Ratios, mean differences and corresponding 95%
CIs in Supplemental Fig S1). These estimates again control for popu-
lation density and county to minimize bias.

Most inequitably distributed sites
Figure 3 presents concentration indices and 95% confidence intervals
summarizing the degree of inequality in the distribution of at-risk sites

with respect to demographic and socialmarginalization indicators.We
utilized concentration indices to identify the categories of facilities
that were the most inequitably distributed for particular populations.
Similar to the Gini coefficient commonly used to characterize income
inequality, a concentration index ranges from −1 to 1, with negative
values (in orange) indicating that the burden of at-risk sites is dis-
proportionately higher for more marginalized groups and positive

Table2 |Characteristics of coastal blockgroups (n = 51,772)with andwithout at-risk siteswithin 1 kmofpopulatedareas in 2100
under RCP 8.5 across the U.S

No at-risk sites (n = 40,233) Median [25th,75th
percentile]

One or more at-risk sites (n = 11,539) Median [25th,75th
percentile]

P-values

% non-voters 26.2 [19.6, 35.1] 29.1 [21.9, 37.9] 0.00

% poverty 25.6 [13.1, 43.6] 29.3 [15.5, 47.9] 0.00

% renters 34.6 [16.2, 60.7] 48.3 [24.3, 72.6] 0.00

% racial and ethnic minorities 44.8 [19.8, 80.3] 47.2 [21.1, 80.5] 0.01

% Hispanic 11.3 [3.7, 29.4] 12.6 [4.2, 33.8] 0.00

% Black 4.3 [0.0, 19.3] 5.3 [0.5, 21.7] 0.00

% Asian & Pacific Islander 2.5 [0.0, 9.8] 2.3 [0.0, 9.2] 0.01

% Native American 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.13

% other people of color 1.6 [0.0, 4.3] 1.5 [0.0, 4.1] 0.04

% linguistic isolation 2.6 [0.0, 9.8] 3.6 [0.0, 12.6] 0.00

% without a vehicle 5.6 [1.4, 16.8] 10.4 [2.9, 29.5] 0.00

% single parent household 16.6 [9.1, 27.0] 16.9 [8.9, 28.2] 0.03

% over 65 23.5 [13.0, 37.4] 26.2 [14.7, 42.5] 0.00

% under 18 20.1 [14.3, 25.9] 19.3 [12.7, 25.5] 0.00

P-values are from a two-sided Mann−Whitney U-test of the null hypothesis that the distributions are equal. No adjustments were made for multiple comparisons.
N is slightly lower for some individual indicators due to missing data.

Odds ratios
[95% confidence interval]

1.50 [1.23, 1.83]

1.41 [1.32, 1.52]

1.36 [1.21, 1.53]

1.35 [1.21, 1.51]

1.27 [1.16, 1.39]

1.22 [1.08, 1.37]

1.19 [1.09, 1.31]

1.15 [1.11, 1.19]

1.05 [0.97, 1.13]

1.02 [0.99, 1.06]

0.99 [0.87, 1.11]

0.93 [0.88, 0.98]

0.92 [0.85, 1.00]

Fig. 2 | Odds ratios and 95% confidence intervals for the association between
the presence of socially marginalized groups and the likelihood of an at-risk
sitewithin 1 km under RCP 8.5, 2100 among coastal neighborhoods (N = 51,957
block groups). Black circles are adjusted odds ratios frommodels that considered
one population characteristic at a time and controlled for population density and
county fixed effects. Error bars indicate 95% confidence intervals and were

calculated using robust standard errors. The dashed line indicates no association.
Disadvantaged status (as defined by the federal Climate and Economic Justice
Screening Tool [CEJST]) is a binary variable; all other variables are continuous and
were scaled by unit standard deviation to facilitate comparisons between effect
estimates.
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values (in blue) indicating that the burden is disproportionately lower
for marginalized groups. Values are shaded white when confidence
intervals include the null, indicating no significant evidence of a dis-
parity. Concentration curves corresponding to the indices given in
Fig. 3 are included in Fig. 4. These display the distribution of at-risk
sites with respect to demographic and social marginalization mea-
sures, with the area between the curve and diagonal line of equality
being equivalent to the concentration index (e.g. between −1 and 1). To
increase the legibility of Fig. 4, for each demographic and social mar-
ginalization measure we display only the five site categories with the
strongest concentration indices, while the full set of concentration
indices is shown in Fig. 3.

At-risk power plants, industrial TRI sites, clean-up sites, and fossil
fuel ports and terminals disproportionately burdened neighborhoods
with higher proportions of renters, non-voters, households without a
vehicle, households living in poverty, and linguistically isolated
households, as indicated by negative concentration index values in
Fig. 3 and curves above the line of equality in Fig. 4. In contrast, at-risk
concentrated animal feeding operations and active oil and gas wells
more often did not disproportionately burdenmarginalized groups, as
indicated by mostly positive concentration index values in Fig. 3 and
curves below the line of equality for many panels in Fig. 4, although
there were exceptions. At-risk refineries disproportionately burden
neighborhoods with higher proportions of non-voters, households in
poverty, and Black residents, and at-risk TRI facilities dis-
proportionately burden neighborhoods with higher proportions of
Black, Hispanic and Asian/Pacific Islander residents. In contrast,
neighborhoods with a higher proportion of Native American residents
are projected to be disproportionately burdened by at-risk active oil
and gas wells, hazardous waste sites, landfills, and formerly used
defense sites (Figs. 3, 4).

Conclusions about which at-risk site types are inequitably dis-
tributed are largely but not entirely consistent across differentmetrics
of flood risk (number of at-risk sites, which is presented in Fig. 3 vs. EAE
across sites which is presented in Supplementary Fig S2). For example,

neighborhoods with higher proportions of renters, linguistically iso-
lated households, and households without a vehicle were not bur-
dened by a disproportionate share of at-risk refineries (Fig. 3), but
when assessing EAE, they were disproportionately burdened (Supple-
mentary Fig S2 and S3). Similarly, Hispanic and Asian/Pacific Islanders
were not burdened by a disproportionate share of at-risk refineries
(Fig. 3), but are disproportionately burdened when considering EAE
(Supplementary Fig S2 and S3). This may be because although the
number of at-risk refineries tends to be higher near neighborhoods
with smaller proportions of these residents, the severity of pro-
jected flooding at those refineries is higher than it is near other
neighborhoods.

Discussion
We present a national assessment of projected SLR-related flooding
threats tomultiple categories of coastal sites and facilities that contain,
use or produce hazardousmaterials. Our results show that of themore
than 47,600 coastal facilities in the U.S. included in our analysis, over
11% (5500 facilities) are projected to be at risk of a 1-in-100-year or
more frequent flood event by the end of the 21st century (2100) under
a high (RCP 8.5) greenhouse gas emission scenario. A handful of states,
including Louisiana, Florida, New Jersey, Texas, California, New York,
and Massachusetts account for nearly 80% of projected at-risk sites.

Facilities at risk include 22% of coastal sewage treatment facilities,
24% of refineries, 44% of fossil fuel ports and terminals, 12% of indus-
trial facilities, 21% of formerly used defense sites and 30% of fossil fuel
and nuclear power plants. A prior study estimated the number of
wastewater treatment plants and service populations across the U.S.
that could be exposed to SLR scenarios from 1 to 6 ft, with projections
ranging from60 impacted treatment plants serving 4million people to
394 plants serving over 31 million people16. That analysis did not
incorporate elevatedwater levels due to tides, waves, and storm surge,
which likely explains why we projected a larger number of sewage
treatment facilities to be at risk of SLR-related flooding in the RCP
8.5 scenario. Another prior assessment of how unmitigated

Fig. 3 | Concentration indices and 95% confidence intervals for the cumulative
distribution of at-risk facilities with respect to selected demographic and
social marginalization measures under RCP 8.5, 2100. Negative values (in
orange) indicate a disproportionately higher burden of at-risk sites for

marginalized groups, while positive values (in blue) indicate that the burden is
disproportionately lower for these groups.White values indicate a lack of statistical
significance at P >0.05. No adjustments were made for multiple comparisons.
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greenhouse gas emissions could affect U.S. power-generating capacity
in 2100 among power plants in coastal areas estimated a similar
number of power plants at risk as we did in our analysis. That study
additionally considered the generation capacity of at-risk power
plants. The authors found significant variation across states with
exposed power capacities relative to current generation capacities
being highest in Delaware, New Jersey and Florida (80%, 63% and 43%,
respectively)17.

Our analysis shows that industrial facilities that are part of the
Toxic Release Inventory make up nearly a third (34%) of the total sites
at risk of SLR-related flooding (N = 1870), second to fossil fuel infra-
structure (41%), including refineries, fossil fuel ports and terminals and
active oil and gas wells. Because we did not include pipelines in our
analysis, our projections of the extent to which the nation’s fossil fuel
infrastructure may threaten coastal communities due to SLR-related
flooding and associated contaminant releases are likely an under-
estimate. Indeed, extreme weather events such as Hurricanes Katrina,
Rita and Harvey, while very different from the slower moving, incre-
mental flooding related to SLR, have dramatically revealed the vul-
nerability of industrial facilities andoil and gas infrastructure. Flooding
following these hurricanes led to oil and chemical spills, pipeline
ruptures, as well as excess air pollutant emissions due to incidental
releases as well as intentional shutdowns, flaring, and subsequent
restartingofoperations at petrochemical facilities18–23. Our prior equity
analysis of contaminant releases related toHurricanesHarvey, Rita and
Ike found that these natural-technological (natech) disasters

disproportionately impacted Hispanic, renter, low-income, and rural
populations5. Similarly, results in this study show significant inequities
in projected SLR flooding threats to potentially hazardous facilities;
communities defined as disadvantaged by the federal Climate and
Economic Justice Screening Tool (CEJST) have a 50% higher odds of
having anat-risk sitewithin 1 km, and aone standarddeviation increase
in the proportion of linguistically isolated households, neighborhood
residents identifying as Hispanic, households in poverty, households
without a vehicle, non-voters, and renters is associated with 19–41%
higher likelihood of an at-risk site.

Our findings align with prior equity studies of current and pro-
jected distributional burdens of flood risk among diverse popula-
tions in the U.S. A national study using Federal Emergency
Management Agency maps from 2001–2019 in urban areas along
with National Land Cover Data and county-level Census data found
that 100-year flood zones, particularly in coastal counties, are often
occupied by a higher proportion of disadvantaged populations24.
Another study of coastal and inland areas estimated an average
increase of 26.4% (24.1–29.1%) in climate change related flooding by
2050 under an RCP4.5 scenario, with the future increase in flooding
risk concentrated on the Atlantic and Gulf coasts and dis-
proportionately affecting Black communities25; although this study
examined flooding and economic losses related to residential and
non-residential properties, it did not consider risks to potentially
hazardous sites. Other studies have examined flooding threats to
active and legacy sites containing hazardousmaterial. For example, a

Fig. 4 | Cumulative distribution of the number of at-risk sites with respect to
selected demographic and social marginalization measures under RCP 8.5,
2100.The X-axis gives the cumulative share of block groups in descending order of
each of the demographic and social marginalization variables. Curves above the
equality line indicate a disproportionately higher burden of at-risk sites for mar-
ginalized groups, while a curve below the equality line indicate that the burden is
disproportionately lower for these groups. For example, the top left panel shows

that the 50% of low-lying block groups with the highest proportion of renters
(indicatedby the x-axis value of 0.5) host roughly 80%of at-risk fossil fuel ports and
terminals and industrial facilities (indicated by y-axis values of0.8), whereas if these
sites were equitably distributed, the y-axis value would be close to 0.5 and the
curves would fall closer to the bolded diagonal line of equality. For legibility, the
top 5 facility categories with the strongest concentration indices for each measure
are shown.
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report found low-income communities were disproportionately
represented among the populations living in proximity to clean-up
sites (listed or candidate sites for the Superfund program) at risk of
coastal flooding under low, medium, and high SLR scenarios in the
East and Gulf Coasts26. A follow-up study identified coastal land
below 10mof elevation as potentially exposed to rising groundwater
and identified 326 Superfund sites in these coastal areas that could
experiencemobilization of toxic compounds from contaminated soil
due to groundwater inundation driven by SLR; results also showed
that socially marginalized groups in several states would be dis-
proportionately affected by this groundwater rise scenario27.
Another analysis of former hazardous manufacturing facilities in six
U.S. cities identified more than 6000 relic industrial sites with ele-
vated flood risk over the next 30 years (2050), with socially vulner-
able groups, including people of color and low income,
disproportionately likely to live in these areas28. Studies outside of
the U.S., for example in coastal regions in India, Copenhagen, Viet-
nam and Italy have investigated the risks posed by climate change-
driven SLR and storm surge on infrastructure and vulnerable
sites29–32, but none to our knowledge have evaluated these risks using
an environmental justice framework.

Strengths of our study include the use of tax parcel data to
characterize the extent of facility boundaries, a probabilistic approach
to estimating SLR-related flood risk, and the application of dasymetric
mapping techniques to estimate populations and community demo-
graphics near at-risk sites. Limitations of our analysis include the fact
that our flood models assume that the frequency and magnitude of
flood events will remain static over the next century. However, studies
indicate that tropical cyclone activity is likely to intensify due to the
acceleration of climate change33–35, which would result in more
damaging impacts to coastal communities36. Additionally, our esti-
mations of annual probabilities of flood level exceedance, based on a
modified “bathtub” approach, do not consider scenarios of ground-
water intrusion and upwelling or nonlinear interactions between
extreme flood events and local topography. These dynamics could
cause increased flood levels at inland locations, especially where
marshlands shrink, and land becomes more developed37. Our analysis
also does not account for floodwater level attenuation particularly in
areas where land is wide and flat, which may overestimate exposure
during extreme storm events38. Locational errors for hazardous sites
may have also led to over- or under-estimates of the number of at-risk
sites, and data limitations precluded inclusion of other facility types,
including underground storage tanks, brownfields, and non-National
Priority List Superfund sites that could experience contaminant
releases due to SLR-related flooding. Inaccuracies in the delineation of
coastline boundaries may have resulted in the inclusion of offshore
drilling sites and the overestimation of flood risk. Finally, we did not
account for future flood risk mitigation efforts or population and
demographic shifts, given the high degree of uncertainty in predicting
these scenarios. Therefore, future actions to mitigate flood risk near
hazardous sites, gentrification, displacement, migration, and other
factors could change the associations we observed between demo-
graphics, measures of social marginalization, and proximity to at-
risk sites.

Our analysis highlights the disproportionate burden of projected
SLR-related flooding threats to hazardous sites on marginalized racial
and socioeconomic groups and elevates the importance of centering
environmental justice in future climate change adaptation and land-
use planning strategies to protect vulnerable coastal communities
from natech disasters. Given that nearly 80% of projected at-risk sites
are in seven states, future in-depth work can target these areas and
more precisely characterize the potential hazards posed by these
facilities to nearby communities with the goal of mitigating and pre-
venting future harmful exposures and health risks. With over 30% of
nuclear and fossil fuel power plants, 23% of refineries, and 44% of fossil

fuel ports and terminals in coastal areas projected to be at risk, federal
reporting requirements for these facilities could be expanded to
include the forecasting of SLR-related flooding threats and preventive
plans for mitigation, including future relocation, to avoid catastrophic
contamination. Critical to these efforts will be ensuring that federal
and state agencies provide publicly available, accessible, and con-
tinually updated data on projections of SLR-related flooding threats to
hazardous sites for diverse end-users, in particular at-risk commu-
nities, planners, regulatory agencies, scientists, and decision-makers39.
Future research focusing on a smaller subset of facilities and more
localized regions or municipalities could further elucidate and
potentially untangle the extent to which place-based trends in indus-
trial, economic, labor market, and housing development trajectories,
demographic churning, changes in land-use decision-making aswell as
other shifting structural factors account for theorigins andpersistence
of inequities in exposures to at-risk sites that disproportionately affect
marginalized populations.

Finally, many other climate-related phenomena, such as
groundwater rise, wildfires, landslides, major storms, and extreme
heat, also threaten clean-up sites and active facilities that use and
store hazardous materials27,40,41. To achieve a fuller picture, infor-
mation on these threats should be integrated with projected SLR
flood risk data. Risks may be reduced through enhanced regulatory
requirements (1) for at-risk facilities to mitigate and prevent con-
tamination threats and (2) for more robust assessment of clean-up
sites to inform abatement activities and decisions about future land
reuse. Action-oriented partnerships between communities living
near at-risk sites and government agencies at local, state, and federal
levels may increase the chances for success of these strategies by
marshalling much-needed resources aimed at preventing con-
tamination from acute natech disasters and slower-moving threats,
including SLR-related flooding.

Methods
Our analytic approach entailed four steps: 1) the identification of
coastal hazardous site locations and the cleaning of associated
descriptive data; 2) the estimation of future flood risk due to sea level
rise at each site location; 3) the compilation of measures of demo-
graphics and social marginalization; and 4) a neighborhood-level
analysis of the relationship between these measures and residential
proximity to at-risk sites. We co-developed these methods with an
advisory committee comprised of staff members from environmental
justice and public health organizations with whom we collectively
decided on greenhouse gas emissions scenarios, timeframes (2050
and 2100), flood risk metrics, categorization of sites, and the demo-
graphic and social vulnerability metrics to include13.

Hazardous sites
The spatial extent of our analysis was U.S counties and county
equivalentswith any landareabelow 18meterselevation abovecurrent
mean higher high water line across all coastal U.S. states and Puerto
Rico (see Supplementary Fig S4). Areas farther inland are at no con-
ceivable risk of flooding due to sea level rise this century and were
therefore excluded. We scaled up an approach for a prior analysis of
California13 to compile a national dataset of active industrial facilities
and other potentially hazardous sites. To achieve this, we sourced data
from the U.S. Environmental Protection Agency’s (EPA) Facility Reg-
istry Service (FRS)42, theU.S. Energy InformationAdministration’s (EIA)
EnergyAtlas43 (petroleumrefineries and terminals), theU.S. ArmyCorp
of Engineers’ (USACE) Waterborne Commerce Statistics Center44

(petroleum ports) and Formerly Used Defense Sites database45, and a
proprietary dataset of active oil and gas production and stimulation
wells from EnverusTM 46. For the FRS, we chose to exclude remediated
and closed facilities and facilities with inaccurate or imprecise loca-
tional information (e.g. latitude and longitude values derived from zip
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codes only or with inaccuracy >50m). This included sites with envir-
onmental interest “end dates” indicating they would no longer be
regulated after 2020 or where records indicated contamination had
been addressed or the site was permanently closed. We retained
inactive facilities and facilities with expired permits because residual
hazardous materials may remain at these sites. We organized the
remaining sites into one of seven categories using (1) environmental
permits or regulatory programs; (2) the North American Industry
Classification System (NAICS) code; and/or (3) keyword filters (see
Cushing et al. 13 for further detail). We made sure that each category
wasmutually exclusive and without duplicate entries, as sites can have
more thanone environmental permit and/orNAICS code and appear in
more than one database. We manually removed FRS entries for refi-
neries using refinery names and coordinates from the EIA Energy Atlas
dataset.

For oil and gas wells, we utilized latitude and longitude point
locations to represent sites due to the small size of well pads com-
pared to other site categories.We identified offshore oil and gaswells
as those that were beyond the boundaries of 2010 Census block
groups, and excluded them from the analysis to focus on wells
located on land. Block group boundaries from theNational Historical
Geographic Information System do not include coastal water areas
and terminate at the coastline. All other site types were represented
as polygons in our analysis to better approximate a site’s extent. For
FRS, EIA, and USACE petroleum port sites, we used the Google API47

to (re)geo-code addresses, then joined the resulting coordinates to
tax parcels obtained from Loveland Technologies (now Regrid)48 to
approximate their spatial boundaries. Wherever a site’s geocoded
location overlapped with a tax parcel, we used that parcel to
approximate that site’s spatial extent for the purposes of projecting
flood risk. Around 79% of our geocoded site locations fell within tax
parcel boundaries. For sites that did not intersect tax parcels, we
approximated boundaries by drawing a buffer equal to the median
parcel area of intersected parcels for each site category (See Sup-
plementary Material Table S1 for median areas applied for each
category). For formerly used defense sites (FUDS), spatial data were
available in both point and polygon format. Not all sites had a point
or polygon, while some sites had both. To ensure we included all
FUDS in our dataset, we (i) first included all facilities with polygon
data, then (ii) identified facilities with point locations falling outside
of these provided polygon boundaries, and (iii) drew a buffer around
these point facilities using a circular radius that would result in the
median area observed among facilities in (i). Wherever a polygon
boundary overlapped with a buffered point, we clipped the latter
based on the physical extent of the former (n = 25). For overlaps
between two polygon boundaries, we used an overlap ratio (calcu-
lated as the area of the overlap divided by the area of the smaller
polygon) to determine whether to split the overlapping area evenly
between two facilities with minimal overlap (≤45%, n = 33), or to
merge substantially overlapping facilities together into one (>45%
overlap, n = 42). We resolved 13 complex cases involving three or
more overlapping facilities manually on a case-by-case basis. The
result of this process was a dataset of FUDS boundaries derived from
original point locations or polygon boundary extents that contained
no spatial overlaps between sites. For all sites, we then clipped par-
cels and circular buffer areas at the coast if they extended past the
mean high tide line.

As a final cleaning step, we flagged and subsequently con-
solidated duplicate sites (n = 656) if theymet three criteria: theywere
assigned to the same category, had identical geo-coded coordinates,
and were associated with the same or similar addresses (we quanti-
fied similarity using a fuzzy text match). We retained facilities with
identical coordinates and similar addresses if they had been assigned
to different categories (n = 232). We dropped facilities withmatching
coordinates but dissimilar addresses (n = 30) if their geocoded

coordinates appeared inaccurate or implausible via manual visual
inspection (e.g., located in the middle of a forest far away from any
established roads).

Flood risk projections
We used the same approach to assess flood risk at individual site
locations as detailed in Cushing et al. (see Supplementary Fig S5)13,49,50.
In brief, we considered probabilistic sea level rise projections51 for two
greenhouse gas emissions scenarios (Reference Concentration Path-
way [RCP] 4.5 and 8.5) and 2 years (2050, 2100)51. For each site, year,
and emissions scenario, we estimated the total annual probability of at
least one flood event exceeding, in height, the 25th percentile of land
elevation for a given site’s parcel or buffer boundary. Projections
account for vertical land movement and coastal flood height return
level curves usingmethods fromTebaldi et al. andupdated tide station
data from across the United States52. We derived elevation profiles
from NOAA’s Coastal Topographic Lidar digital elevation model53, and
estimated the annual flooding probabilities using Equation (1) from
Buchanan et al.50 We considered sites to be at risk if their projected
annual probabilities exceeded 0.01 (i.e., threatened by a 1-in-100 year
flood event).We also summed theseprobabilities across sites to derive
a total expected annual exposure (EAE) across all at-risk sites within a
given distance of neighborhood (block group) boundaries.

Neighborhood demographics and social marginalization
We used 2010 U.S. Census block group boundaries as our definition of
geographic neighborhoods. Census block groups are generally con-
tiguous geographic areas that contain between 600 and 3000 people
and are the smallest unit forwhich theU.S. CensusBureau reports a full
range of demographic statistics. We used the U.S. Census American
Community Survey’s (ACS) 2015–2019 five-year estimates54 to
approximate demographic characteristics at the block group level: age
(% under 18 and % 65 and older), race/ethnicity (% people of color,
defined as the inverse of % non-HispanicWhite and disaggregated into
% Hispanic, and % non-Hispanic [NH] Black, NH Asian or Pacific Islan-
der, NH Native American, and NH other includingmultiracial), poverty
(% below twice the federal poverty line), housing tenure (% renter-
occupied units), vehicle ownership (% of households without a vehi-
cle), family structure (% single parent-headed households), linguistic
isolation (% of households where no one 14 years or older speaks
English “very well”). We used voter turnout data from the 2016 and
2020 general elections from Catalist’s National Database to approx-
imate civic engagement (% of registered voters that did not vote
averaged across the twoelections). Finally, we used the federal Climate
and Economic Justice Screening Tool (CEJST) that identifies dis-
advantaged communities in all 50 states, the District of Columbia, and
U.S. Territories55. Developed as part of the Justice40 Initiative, CEJST
was used by federal agencies to identify disadvantaged communities
facing disproportionate climate and environmental burdens as well as
economic marginalization. CEJST identifies disadvantaged commu-
nities through eight categories of vulnerability metrics related to cli-
mate change, energy, health, housing, legacy pollution, transportation,
water and wastewater, and workforce development. Census tracts are
identified as disadvantaged if they meet 90th percentile thresholds for
indicators within any of the eight categories and are at or above the
65th percentile for low-income.

Statistical analysis
We began by identifying and including only counties in our study area
with at least one site at risk under RCP 8.5 by 2100. We then further
restricted the geographic extent of our analysis to “coastal” block
groups in these counties within 3-km Euclidean distance of the 10-m
elevation line above mean higher high water line. Our primary out-
come of interest was the presence of at least one at-risk site within
1 km. We considered block groups to have this outcome if they
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contained populated areaswithin a kilometer of at least one at-risk site
(see Supplementary Fig S4). Because block groups can bequite large in
rural areas, we utilized gridded population estimates at a 30 × 30m
resolution56 to define populated portions of block groups with the
exception of Alaska, Hawaii and Puerto Rico for which these estimates
were not available and where we therefore relied on block group
boundaries alone. We secondarily considered (1) the total number of
at-risk sites within 1 km, and (2) the sum of annual flood event prob-
abilities (total “expected annual exposure”, EAE) across all at-risk sites
within 1 km. We conducted sensitivity analyses considering alternate
versions of these outcomes using a 3 km rather than 1 km buffer
distance.

We examined descriptive statistics and correlation coefficients
between our demographic measures and indicators of social margin-
alization and compared the distribution of neighborhood character-
istics between exposed and unexposed block groups using Mann-
Whitney U test because variables were not normally distributed. We
then ranmultivariable regressionmodels for eachoutcomevariable and
vulnerability indicator pair, with block-group population density (peo-
ple per square kilometer), and county fixed effects as additional inde-
pendent variables. We did not include multiple demographic or social
marginalization indicators in the same model due to multicollinearity.
We chose to include population density as a potential confounder due
to known associations between race/ethnicity, population density, and
proximity to industrial facilities57,58. We included county fixed effects to
control for regional demographic differences and in effect compare
block groups with and without at-risk sites within the same county. We
scaled continuous variables by unit standard deviation (SD), using the
mean and SD from all block groups in our universe to allow for easier
comparisons between effect estimates. In our primary analysis, we used
a logisticmodel to estimate the odds of proximity to an at-risk site (yes/
no variable). Restricting to exposed block groups, we used a negative
binomial model to estimate associations with the number of sites
nearby (count variable) and a linearmodel to estimate associationswith
EAE (continuous variable). We used county-clustered robust standard
errors to control for the spatial autocorrelation.

Finally, we used concentration curves to visualize the cumulative
distribution of the number of exposed facilities and EAEwith respect to
each indicator of social marginalization. We also derived the con-
centration index (C) equal to the area beneath the curve and line of
equality in our concentration plots to quantify the cumulative dis-
tributions. C ranges between −1 and 1, with negative values indicating
that block groups with higher proportions of residents from socially
marginalized groups have a greater number of at-risk facilities and EAE,
and positive values indicating they have a smaller burden of at-risk sites
and EAE. AC valuewith a confidence interval that includes the null value
of 0 indicates that the number of exposed facilities and EAE are similar
between more and less marginalized populations. We calculated C
using all coastal block groups, and we calculated separate indices for
each facility category focusing on year 2100 under RCP 8.5. Con-
centration curves and indiceswerecomputedusingR (version4.5.0). All
other statistical analyses were conducted using Python (version 3.13.7).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during the current study are available from the
Toxic Tides maps in Climate Central’s Coastal Risk Screening Tool
(flood risk projections, https://coastal.climatecentral.org/), GitHub
(analytic dataset and code, https://github.com/yangju-90/toxic_tides_
us), and Zenodo (analytic dataset and code, https://doi.org/10.5281/
zenodo.16925499).
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