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ABSTRACT

A simple approach to long-range forecasting of monthly or seasonal quantities is as the average of observations
over some number of the most recent years. Finding this ‘‘optimal climate normal’’ (OCN) involves examining
the relationships between the observed variable and averages of its values over the previous one to 30 years and
selecting the averaging period yielding the best results. This procedure involves a multiplicity of comparisons,
which will lead to misleadingly positive results for developmental data. The statistical significance of these
OCNs are assessed here using a resampling procedure, in which time series of U.S. Climate Division data are
repeatedly shuffled to produce statistical distributions of forecast performance measures, under the null hypoth-
esis that the OCNs exhibit no predictive skill. Substantial areas in the United States are found for which forecast
performance appears to be significantly better than would occur by chance.

Another complication in the assessment of the statistical significance of the OCNs derives from the spatial
correlation exhibited by the data. Because of this correlation, instances of Type I errors (false rejections of local
null hypotheses) will tend to occur with spatial coherency and accordingly have the potential to be confused
with regions for which there may be real predictability. The ‘‘field significance’’ of the collections of local tests
is also assessed here by simultaneously and coherently shuffling the time series for the Climate Divisions. Areas
exhibiting significant local tests are large enough to conclude that seasonal OCN temperature forecasts exhibit
significant skill over parts of the United States for all seasons except SON, OND, and NDJ, and that seasonal
OCN precipitation forecasts are significantly skillful only in the fall. Statistical significance is weaker for monthly
than for seasonal OCN temperature forecasts, and the monthly OCN precipitation forecasts do not exhibit sig-
nificant predictive skill.

1. Introduction as long-range predictors are provided in Dixon and
Shulman (1984), Lamb and Changnon (1981), and
Sabin and Shulman (1985). Generally, the character-
istics of these revised climate normals are assessed in
relation to the conventional 30-yr normal (e.g., Kunkel
and Court 1990). A variety of earlier studies address-
ing this issue, some dating to the first half of the cen-
tury, are also cited in the above papers.

This simple averaging procedure is currently used as
one contributor to new operational long-lead forecasts
produced by the U.S. Climate Prediction Center
(Huang et al. 1996, hereafter HVB), who call the av-
erage over that number of years yielding the best per-
formance the ‘‘optimal climate normal’’> (OCN). Op-
erating on area-averaged (U.S. Climate Division) data
for seasonal (i.e., running averages of three months)

Very long range forecasting—with lead times on the
order of one year—is a difficult problem, even when
the predictand is an average over one month or season.
The accuracy of such forecasts is currently quite lim-
ited, and accordingly, relatively unsophisticated meth-
ods can be competitive. A very simple and operation-
ally straightforward method for constructing such fore-
casts is as the average over that number of the most
recent years’ values found to give the best ‘‘hindcast’’
performance on a set of historical data. Forecasts pre-
pared according to this method have lead times of ap-
proximately 11 months when the predictand is a
monthly average or nine months when the predictand
is a three-month average.

Searching the climatic record at a location for that

averaging period yielding the best hindcast perfor-
mance is not a new idea. Some relatively recent dis-
cussions of the screening of different averaging periods
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temperature, HVB selected averaging periods that
yielded best hindcast performance for the years 1961 —
1993. Analogous procedures underlie the operational
OCN forecasts of seasonal precipitation and of monthly
temperature and precipitation.

While the procedure for computing the OCN fore-
casts is operationally straightforward, an objective
evaluation of the resulting forecasts is conceptually
more difficult. At individual locations, the procedure of
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blindly screening the hindcast performances of all av-
eraging periods between one and 30 years involves a
multiplicity of comparisons. Choosing the single best
averaging period from many possibilities should ac-
cordingly lead to some degree of ‘‘artificial skill’” or
misleadingly positive results for the developmental
data. While a cross-validation approach would be a de-
sirable safeguard, the procedure by which it might be
constructed is not clear due to the overlapping of the
averaging periods and the shortness of the available
record relative to the 30-yr maximum averaging period.
Recognizing this problem, HVB used a deflator due to
Barnston and Van den Dool (1993) to estimate forecast
performance on independent data.

- An equally serious problem relates to the multiplicity
of simultaneous evaluations of hindcast performance at
many locations. Because of the strong spatial correla-
tion typically exhibited by monthly and seasonal tem-
perature and precipitation data, the apparently (but er-
roneously) good hindcast performances occasionally
arising by chance will tend to occur with spatial co-
herency, and these areas accordingly have the potential
to be confused with regions for which there may be
real predictability. This aspect of the problem is espe-
cially of concern because the selection of averaging
periods at the individual locations is, by the nature of
the searching procedure, ‘‘tuned’’ to the sampling vari-
ations particular to the available data records.

This study approaches both the local and spatial
OCN multiplicity problems through nonparametric hy-
pothesis testing procedures. Seasonal and monthly tem-
perature and precipitation data from United States cli-
mate divisions for the years 1931-1993, as in HVB
and described in section 2, are used in order to allow
valid comparisons with that study. The statistical sig-
nificance of the OCNs for single-location dependent
data specifications is assessed using a resampling pro-
cedure, described in section 3, in which individual data
series are repeatedly shuffled and statistical distribu-
tions of various performance measures are produced,
under the null hypothesis that the OCNs exhibit no pre-
dictive skill relative to the conventional 30-yr normals.
The ‘‘field significance’’ of the collections of local tests
described above is similarly assessed in section 4 by
simultaneously and coherently shuffling the time series
for all the climate divisions and summarizing the results
of individual-location tests under this sampling
scheme. Section 5 explores the possible physical basis
of the OCN skill, and section 6 presents the results of
hypothesis tests consistent with operational constraints
that have emerged in connection with use of the OCN
forecasts.

2. Data, forecasts, and verification measures

The U.S. Climate Division data, for 1931-1993
(National Climatic Data Center 1994 ) are used in
the following in order to maintain maximum com-
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parability with HVB. Monthly data for the 344 di-
visions in the 48 conterminous states were obtained
from the National Climatic Data Center.

Analyses of both the raw monthly and composited
seasonal data series are reported below. Monthly series
for temperature and precipitation for each calendar
month were used directly. For each ‘‘season,”” com-
prised of triplets of consecutive months (January-Feb-
ruary—March, February—March—April, etc.), the re-
spective monthly temperatures for each division were
averaged, and the monthly precipitation values were
totaled. The result in each case is a time series, T;, i
=1, ---, 63; in which i = 1 corresponds to the year
1931, and i = 63 indicates the year 1993. This notation
will be applied to both the temperature and the precip-
itation data.

The k-year ‘‘climate normal’’ predictor for the data
value 7T; is simply the average over the previous k val-
ues in that time series, that is

k
Ti,k= ZTi—j- (1)
j=t1

The averaging period is allowed to vary between k = 1
(the “‘persistence’” forecast) and k£ = 30 (the annually
updated ‘‘30-yr normal’’). Accordingly, the first year
for which hindcasts can be computed for the present
dataset is 1961 (i = 31). For each data series, the av-
eraging period for which (1) produces the best speci-
fications for the years 1961-1993 is chosen as ‘‘opti-
mal.”’

The correspondence between the OCNs and data for
the years being hindcast was judged in HVB primarily
using correlation measures of the form

S 1T

i=31

n n 1/2 »
[ s (T%)? (T?”)z]
=31 i=31

COR(k) = (2)

where n = 63 years for the present dataset, the su-
perscript ‘“f’’ denotes forecast, and the superscript
“‘ob’’ indicates the target observed datum to be spec-
ified. Larger values of COR (k) indicate better fore-
casts. The circumflex accents indicate anomalies
constructed as

T{ = Ti,k - <T,j> (3a)
and
T =T, — (T?). (3b)

Different choices for the averages (T;) yield some-
what different correlation scores in (2). Two such av-
erages were used in HVB. The first of these is defined
by
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which simulate the use of ‘‘aging WMO normals,’” or
30-yr averages updated decadally (e.g., 1951-1980)
and available a few years following the end of the av-
eraging period. Denote as COR,(k) the agreement
measure in (2), when (4) is used to define the anom-
alies.

The second measure used in HVB uses the annually
updated 30-yr mean

<T{>=<T?b>=i,3o- (5)

This is simply the average of the 30 values previous to
the forecast value, as given in (1). Denote as COR, (k)
the agreement measure in (2), when (5) is used to
define the anomalies.

The measures COR, (k) and COR, (k) are ‘‘anomaly
correlations,”” in that the data values are approximately
centered by subtraction of an externally derived aver-
age. These are somewhat different from the conven-
tional Pearson product-moment (i.e., ordinary linear)
correlation coefficient, which is obtained from (2) us-
ing

1 =
n— 31 2 T

i=31

(T/) = (6a)

and

1 n
T;.
n— 31 2

i=31

(T7%) =

(6b)

Also considered here is the normalized mean-
squared error,

S (Tx-T)°

MSE*(k) = 55— : (N
2 (Tipo— T)?
i=31

The numerator in (7) is proportional to the forecast
mean-squared error. The normalizing factor in the de-
nominator of (7), which is proportional to the mean-
squared error for the annually updated 30-yr normal, is
included to allow MSE *(k) values for different loca-
tions to be comparable, regardiess of their intrinsic de-
grees of interannual variability. Smaller values of
MSE *(k) indicate better forecasts.

3. Local statistical significance

a. Concepts

3

Determining the ‘‘optimal’’ value of the averaging
period, k, involves examining the accuracy with which
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the data values for each station can be specified using
(1), as reflected by measures such as (2) or (7), for
each of the 30 values of k considered. That value of the
averaging period yielding the best hindcast perfor-
mance among these 30 values on the available data is
chosen.

Although this procedure is intuitively appealing, the
results are difficult to interpret because of the many trial
values that are considered. Even if there is little real
relationship between the predictor in (1) and the data
values T;, there may be ample opportunity for chance
variations in the relatively short data series to yield a
value of k for which a chosen accuracy measure indi-
cates appreciable predictability. That is, it is the value
of k yielding the (apparently) most accurate among
many hindcasts being chosen, rather than the accuracy
of forecasts based on an independently chosen aver-
aging period being evaluated. The consequence of this
multiplicity of comparisons is that some degree of “‘ar-
tificial skill,”” or misleadingly positive results for the
developmental data, is expected. In the worst case, pre-
dictability may be inferred as an artifact of the exhaus-
tive fitting procedure when none really exists.

A usual remedy for dependent-sampling problems of
this kind is to conduct a cross-validation analysis (e.g.,
Efron 1982; Elsner and Schmertmann 1994; Wilks
1995). This procedure involves repeating the forecast-
fitting exercise many times, each with a different subset
of the developmental data (often a single point) with-
held. The forecast algorithm is thus not ‘‘tuned’’ to the
withheld points, and the accuracy with which these
points can be forecast is then evaluated. In the present
problem, however, the averaging periods overlap, and
the length of the data series (63 years) is short with
respect to the maximum averaging period (30 years),
so that it is not clear how to design a cross-validation
procedure having an adequate sample size.

Recognizing this local multiplicity problem, HVB
deflated the dependent-sample correlation measures
COR, (k) and COR,(k) using (Barnston and Van den
Dool 1993)

N’ COR2(k) — 1
(N' — 1) COR(k)’
COR(k) > (N')"V2, (8)

where N’ = 20 (rather than N = 33, for specifications
of the years 1961-1993) was used as an estimate of
the ‘‘effective independent sample size.”” Only OCN
forecasts exhibiting COR’ (k) > 0.30, corresponding
to COR, (k) or COR,(k) > 0.408, were then regarded
as reflecting real predictability.

An alternative but complementary approach is to
view the problem in the context of an hypothesis test:
under the null hypothesis that (1) provides no better
information regarding the data values 7; than a 30-yr
climatological average, what is the probability that re-
sults equal to or stronger than those observed for a

COR' (k) =
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TaBLE 1. Critical values (10%, 5%, and 1% levels) for the performance statistics in (2) and (7) for underlying data following Gaussian
distributions and n = 63, when (a) the best averaging period (k) among 30 is chosen and (b) the averaging period is chosen randomly. The
critical levels in (a) are appropriate to the OCN forecasts, and the cutoff value of 0.408 adopted by HVB is very close to the 5% critical
value for COR,(k). The differences between corresponding values in (a) and (b) illustrate the impact of searching among many choices for
the “‘best’” predictor, even under the null hypothesis of no real relationship.

(a) ®)

Measure 10% 5% 1% Measure 10% 5% - 1%
COR,(k) 0.374 0.425 0.517 COR, 0.258 0.318 0.428
COR,(k) 0.364 0.404 0.484 COR, 0.198 0.254 0.354
MSE*(k) 0.928 0.901 0.828 MSE* 0.980 0.960 0.914

given climate division could have arisen by chance? If
that probability is sufficiently small (perhaps 0.05 or
less), the null hypothesis is rejected and one can con-
clude that the OCN forecast exhibits statistically sig-
nificant predictive accuracy.

The observed values of the performance statistics in
(2) and (7), as the best of 30 trials, are complicated
functions of the data 7;. Accordingly, the functional
form of their sampling distributions under the null hy-
pothesis (called the nulil distribution) is not known, and
this precludes use of conventional parametric statistical
tests. A sound and practical alternative is to evaluate
the significance of the OCN predictors using a resam-
pling test (e.g., Mielke et al. 1981; Wilks 1995). Re-
sampling tests operate on the set of available data by
simulating the data-generation process and repeatedly
computing the test statistic [Eqgs. (2) or (7)] under dif-
ferent permutations of the observations consistent with
the null hypothesis. The collection of these values pro-
vides a reference distribution consistent with the null
hypothesis, against which the actually observed value
of the test statistic can be compared for unusualness.

In the present problem, any significant predictive
skill (with respect to the 30-yr normals) exhibited by
the OCN forecasts presumably derives from the data
series T; exhibiting at least somewhat consistent trends
or cycles in time. Either cycles or pseudocycles in the
data with periods shorter than 30 years, or consistent
trends with periods longer than the sample size, could
lead to OCN forecasts exhibiting significant skill with
respect to the 30-yr normals. In either case, the null
hypothesis of no predictive skill implies that each 63-
member data series exhibits no real time dependence,
and to the extent that the data appear to contradict this
condition it is as a result of chance orderings. There-
fore, according to the null hypothesis, each observed data
series is but one of the 63! =~ 1.9826 X 10% equally
likely possible orderings of the 63 data values. The ref-
erence distribution for any of the performance mea-
sures can be constructed by shuffling the T; values suf-
ficiently many times to sample adequately the 63! pos-
sibilities, computing the value of the test statistic for
each of the 30 values of k in each random reordering,
and recording the largest [or smallest, for MSE*(k)]

of each set of 30 test statistics. For the shuffled data,
the best ‘‘predictions’’ overall for the resampled trials
should be achieved by the longest averaging period, in
this case 30 years [compare Monte-Carlo results in
Dixon and Shulman (1984) and Sabin and Shulman
(1985)]. If the observed value of the test statistic (best
over k = 1, -+, 30; in the unshuffled data series) is
larger [or smaller, for MSE*(k)] than all but a small
fraction of the values in the reference distribution, then
the null hypothesis can be rejected at a level consistent
with that fraction.

b. Temperature series

For the temperature data, it is not actually necessary
to repeat the resampling process for each of the 344
climate divisions and each of the 12 months or seasons.
The distributions of monthly and seasonal temperatures
are very nearly Gaussian, which is to be expected ac-
cording to the central limit theorem, since these are
averages of approximately 60 (for monthly values) or
180 (for seasonal values) individual daily maximum
and minimum temperature observations. In addition,
the performance measures in (2) and (7) are nondi-
mensional, so that their behavior under the null distri-
bution for Gaussian variates can be simulated once and
for all using synthetically generated standard (x = 0,
0% = 1) Gaussian random numbers.

Table 1a shows the 10%, 5%, and 1% critical values
for the null distributions of COR,(k), COR,(k), and
MSE *(k) computed using 10 000 separate samples of
n = 63 independent standard Gaussian variates. The
values in Table la agree quite closely with those ob-
tained through the resampling of actual seasonal tem-
perature series of the same length. The critical values
for COR, (k) and COR, (k) are similar but not identical,
with consistently larger values for COR, (k) being re-
quired to reject the null hypothesis at a given level.
Table la indicates that the cutoff value of 0.408
adopted by HVB [Eq. (8)] is very close to the 5%
critical value for COR, (k). The critical values for the
correlation measures increase for more stringent rejec-
tion levels, but those for MSE *(k) decrease because
smaller values for this statistic indicate better forecasts.
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The critical values for MSE *(k) indicate, for example,
that in 10%, 5%, and 1% of the 10 000 random series,
a value of k could be found that yielded MSE as small
or smaller than the MSE for k = 30 multiplied by the
factors 0.928, 0.901, and 0.828, respectively.

The values in Table 1a are appropriate for evaluation
of the statistical significance of the OCN temperature
forecasts, for n = 63. It is interesting to compare these
to the values in Table 1b, which were produced in the
same way, except for the crucial difference that the 30
possible values of k£ were not searched for the one yield-
ing the best specifications. Rather, for each of the
10 000 trials, a single value of k was chosen randomly.
As the best predictors from sets of one, rather than 30
possibilities, the values comprising the distributions
summarized in Table 1b are necessarily smaller (larger,
for MSE *) than the corresponding results in Table 1a.
The differences between the corresponding entries in
Tables la and 1b illustrate the potential danger in-
volved in searching a wide range of possibilities when
choosing an ‘‘optimal’’ averaging period: even if there
is no real relationship in the data, a few of the com-
parisons are likely to yield apparently good results by
chance. Focusing on these best values in the dependent
dataset yields exaggerated and rosy results.

Fuller pictures of the null distributions for the statis-
tics COR,(k) and MSE*(k) are presented in Fig. 1.
Figure la shows the upper half of null distribution for
COR; (k) for sample sizes n = 40, 50, 60, 80, 100, and
200. Figure 1b shows the lower half of the null distri-
bution of MSE *(k), for these same sample sizes. The
dashed horizontal lines in these panels indicate the
10%, 5%, and 1% critical levels. For example, Fig. 1b
indicates that approximately 2% of the 10 000 synthetic

Cumulative Probability

05 T T T T T T
01 0.2 03 04 0.5 06 07 08 0.9

COR,(k)
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independent Gaussian data series with n = 40 yielded
values of MSE *(k) smaller than 0.6, that about 5% of
these values were smaller than 0.7, and that 10% were
smaller than approximately 0.775. That is, for data se-
ries with n = 40 [i.e., only n — 31 = 9 terms in the
numerator and denominator of Eq. (7)], an observed
value of MSE *(k) would need to be no larger than 0.7
for it to be declared statistically significant at the 5%
level, but for n = 50, MSE *(k) as large as about 0.85
would be significant at that level. Figure 1 reflects the
inflation arising from the searching of each of the data
series for the value of & yielding the best results. Cor-
responding results for k being chosen either a priori or
randomly (not shown) would be to the left of the cor-
responding curves in Fig. la and to the right of the
curves shown in Fig. 1b (compare Table 1b).

Figure 2 shows the spatial distribution of locally sig-
nificant tests at the 344 climate divisions for the (a)
MAM, (b) JJA, (c) SON, and (d) DJF seasonal tem-
perature data using the MSE*(k) performance crite-
rion. Large circles, pluses, and heavier dots indicate
significance at the 1%, 5%, and 10% levels, respec-
tively. For JJA and DJF (Figs. 2b and 2d), large areas
are significant at the 1% and 5% levels in the eastern
one-third of the United States, and the same is true of
the western portion of the country in MAM (Fig. 2a).
These are fairly convincing indications that, in these
seasons at least, the OCNs perform better than would
be expected by chance alone. For SON (Fig. 2c¢), there
is a group of divisions in the upper midwest that show
local significance at the 5% level, and a few scattered
stations also show significant results. Because of the
multiplicity of (spatially) correlated tests considered
here, that such a pattern would not have arisen by

(b) Iw

Cumulative Probability
1

MSE*(k)

FiG. 1. Upper and lower halves, respectively, of the null distributions of (a) COR,(k) and (b)
MSE*(k) for selected data series lengths. The upper tail of the COR,(k) distribution is shown
because larger values of this statistic indicate better forecasts, and the lower tail of the distribution
of MSE*(k) is shown because smaller values of this statistic are better. Dashed lines indicate

10%, 5%, and 1% significance levels.

Unauthenticated | Downloaded 12/10/23 05:54 PM UTC



832 JOURNAL OF CLIMATE VOLUME 9

50 50
L e o L e, (a) MAM (b) JJA

. g0 . .' . . . ‘..’:.‘ . . . .
£ D + + v i
R O A R S R ST s *1-n :
. + ++ . F .- .
. &+
§40_ oe e e, . - : %:;40— . . . 2.
= . + . . b=
kit . . s .
= ¢ ‘e - * = * . .
% 351 . el £ 35 .
§ . bt + . .':.". : 2 . . +
. . “ 3 .

30 p<00l = 30 p<00l o .ot ..
001<p<0.05 + 0.01<p<0.05 + . .
005<p<0.10 - 005<ps0.10 - . ..

25 0.10<p i 25 0.10<p .

T T L ¥ T T T T T 1 1 T T T T T 1 T T T T T
120 110 100 90 80 70 120 110 100 20 80 70
West Longitude West Longitude
50 50
(c) SON (d) DJF
. + N T . . . N . . . . -
45 . . 45 . . O T .
. R LI T N NN L
t ++ -'.;.:-r,
© - o wet Fell, dT
540- + 540— . '++.+f‘-:- ,'.“ :.;
= . = . .t
T . . . ki el *e Whes
£ . . £ . PR T S
£ 35 . T 35 . A . ot
2 L 235 o e LT "*:":.‘3.":0"*
. + b .., . . --o.’ [
e et e 4
& a ‘ . LRI

30 ps0.0t Lo . 30 ps0.01 e .+ T *
0.01<ps0.05 + . + 0.01<ps005 + + .
0.05<ps0.10 -« . . 0.05<p<0.10 - . "

25 4 0.10<p . . 25 0.10<p 3

T L] T T 1 T T T T T T T 1 T T T T T T L T T
120 110 100 90 80 70 120 110 100 90 80 70
West Longitude West Longitude

FiG. 2. Spatial distributions of the statistical significance of local OCNs for 19611993, according to the critical values for MSE*(k)
in Table 1a, for seasonal U.S. Climate Division temperature data. (a) March—April-May, (b) June—July—August, (c) September—

October—November, (d) December-January-February.

chance is less clear. This question will be investigated
in section 4.

The spatial distributions of locally significant tests
shown in Fig. 2 are very similar to, although not exactly
the same as, those which result from use of the
COR, (k) and COR,(k) criteria (not shown). These
maps also resemble qualitatively the spatial distribu-
tions of the COR, (k) statistic presented in HVB.

c. Precipitation series

The Gaussian critical levels presented in Table 1a
and Fig. 1 are appropriate to the divisional precipitation
data only in those cases where the statistical distribu-
tions of the data values are not -excessively skewed.
Critical levels for resampling tests based on individual
divisional precipitation data series, as described in sec-
tion 3a, agree well with those in Table la for those
divisions where gamma distributions fit to the data val-
ues exhibit shape parameters larger than about five. For
some of the divisions yielding shape parameters
smaller than this value, however, the appropriate crit-
ical values are substantially larger, and the differences

are larger for the more stringent test levels. For these
divisions, use of the values in Table 1a would lead to
unjustified rejection of local null hypotheses, leading
to false confidence in the results. Substantial areas of
the United States exhibit seasonal precipitation totals
that are sufficiently skewed to be fit by gamma distri-
butions with shape parameters smaller than five (Ro-
pelewski and Jalickee 1983), and this is true for
monthly precipitation over even larger areas (Wilks
and Eggleston 1992). Therefore, all significance tests
for precipitation series presented here are based on in-
dividual divisional resampling procedures, rather than
critical levels derived from Table 1a or Fig. 1.

Figure 3 shows the spatial distributions of locally
significant tests for divisional precipitation totals over
(a) MAM, (b) JJA, (c) SON, and (d) DJF, again for
the MSE *(k) criterion. In contrast to the corresponding
results for seasonal temperatures (Fig. 2) there are rel-
atively few divisions for which seasonal OCN forecasts
of precipitation are sufficiently accurate for their per-
formance to be regarded as not having arisen by
chance. The strongest result is for SON (Fig. 3c¢), in
which divisions around the Great Lakes through a por-
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FIG. 3. As Fig. 2, for seasonal precipitation. The critical levels have been taken from individual division by division resampling tests
because the precipitation data at drier locations are strongly non-Gaussian.

tion of the Midwest appear to show a coherent pattern
of statistical significance at the 5% and 1% levels. The
extent to which these patterns of local significance may
be regarded as significant in a larger sense is examined
in the next section.

4. Field significance

Section 3 described evaluation of the statistical sig-
nificance of local OCN forecasts for the 344 United
States climate divisions. In order to fully evaluate the
promise of the OCN forecasts, it is necessary to eval-
uate the statistical significance of the overall pattern of
forecast performance, that is, the ‘‘field significance’’
(Livezey and Chen 1983) of patterns such as those
shown in Figs. 2 and 3.

This assessment of the overall significance of the
OCN:ss jointly at all 344 climate divisions is compli-
cated by two factors. The first derives simply from
the large numbers of individual tests being evalu-
ated simultaneously. Even if the forecasts were not
better than the 30-yr average at any of the 344 cli-
mate divisions, some fraction of these many indi-
vidual tests would yield nominally significant re-

sults purely by chance. If the null hypothesis is true,
any given test will yield a falsely significant result
(type I error) at the 5% level, say, with probability
0.05. For independent tests, it is straightforward to
deal with this problem using the binomial distribu-
tion (Livezey and Chen 1983; von Storch 1982;
Wilks 1995). For example, in a hypothetical collec-
tion of 20 independent tests for which the null hy-
pothesis is really true, one expects (in the statistical
sense) one false significant result at the 5% level.
However, the probability is greater than 0.25 that
there will be at least two such results among 20 in-
dependent tests. '

The second complication is more subtle and derives
from the spatial correlation of the divisional tempera-
ture and precipitation data. Because of these correla-
tions, false rejections of local null hypotheses will tend
to occur with spatial coherency and will accordingly
have the potential to be confused with regions for
which there may be real predictability. The multiplicity
problem for correlated tests is more difficult to deal
with and is in general approached through construction
of an appropriate resampling test (Livezey and Chen
1983).
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FiG. 4. P-values summarizing field significance tests for OCN forecasts of (a) seasonal tem-
perature, (b) seasonal precipitation, (c) monthly temperature, and (d) monthly precipitation. Local
tests for temperatures were conducted at the 5% level, and local precipitation tests were at the
10% level. The symbols ‘‘1,”” *2,”” and ‘‘M’’ indicate tests using the COR,(k), COR,(k), and

MSE*(k) statistics, respectively.

Here the field significance of the collections of sets
of local tests described above is assessed by simulta-
neously and coherently shuffling the individual time
series for all the climate divisions. That is, for this re-
sampling test the data consist of time series of 344-
element vectors T;, i = 1, - -+, 63. Sampling from the
63! permutations of these vectors simulates the condi-
tion irnplied by the null hypothesis that the particular
time ordering of the data is arbitrary, while preserving
the spatial relationships of the data in each year. Here
10 000 permutations of the vectors T; were drawn, and
local tests were conducted on these samples for each
of the 344 divisions as described in section 3. The null
distribution then consists of the areas (not numbers of
tests, because sizes of the climate divisions vary

widely) over which nominally significant tests oc-
curred over the 10000 trials. The statistical signifi-
cance of the actual area over which locally significant
tests occur is then assessed by comparison to the cor-
responding distribution of areas of (falsely) significant
local tests under the null hypothesis.

Figure 4 summarizes the results of these field sig-
nificance tests for forecasts of (a) seasonal tempera-
ture, (b) seasonal precipitation, (¢) monthly tempera-
ture, and (d) monthly precipitation. The local tests
upon which these results are based were conducted at
the 5% level for temperatures (Figs. 4a and 4c) but at
the 10% level for precipitation (Figs. 4b and 4d) since
relatively few local precipitation tests were significant
at the 5% level. The vertical scale for the field signifi-
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cance p values are inverted and logarithmic, and hori-
zontal dashed lines indicate field significance at the 1%,
5%, and 10% levels. The symbols “‘1,”” ““2,”> and
““M’’ indicate tests using the COR, (k), COR;(k), and
MSE*(k) statistics, respectively. The results for tests
involving these three measures are in general agree-
ment, although COR, (k) shows a tendency to yield ap-
parently more significant results in some cases.

Figure 4a indicates that the OCN forecasts for sea-
sonal temperature are significantly better than using the
30-yr average, except for the seasons September—Oc-
tober—November, October—November—December,
and November—December—January. The areas in Figs.
2a, 2b, and 2d over which local tests were significant
at the 5% level (symbols ® and +) are large enough
that they are very unlikely to have occurred by chance.
On the other hand, the result for September—October—
November (Fig. 2c) shows an area for tests significant
at the 5% level that is smaller than more than 10% of
the results obtained from the shuffled temperature
fields.

The results for seasonal precipitation in Fig. 4b are
much weaker, with the most consistent statistical sig-
nificance occurring only for September—October—No-
vember, and October—November—December. Com-
paring with Fig. 3, the areas over which local tests were
significant at the 10% level (symbols ®, +, and ®) were
larger than those in Fig. 3¢ (for SON) in fewer than
5% of the results obtained from the shuffled precipi-
tation fields. By contrast, the areas over which signifi-
cant local tests occurred in Figs. 3a, 3b, and 3d were
not atypical of those achieved using the 10 000 shuffled
precipitation fields.

Figures 4c and 4d show that the statistical signifi-
cance of the OCN monthly forecasts is considerably
weaker. For temperature (Fig. 4c), the strongest results
are for January, April, July, August, and October, al-
though few of the tests achieve field significance at the
1% level. The results for monthly precipitation (Fig.
4d) are worst of all and indicate that performance of
the OCNSs is essentially indistinguishable from the re-
sults on the randomly reordered data. Evidently the
OCN forecasts for monthly precipitation have no sig-
nificant predictive value.

5. Possible physical basis of skill

It was noted in section 3a that OCN forecasts could
exhibit skill relative to conventional 30-yr normals ei-
ther if the data exhibited short-term cyclic or pseudo-
cyclic behavior or if the observed data record were part
of a longer-term (perhaps century-scale) consistent
trend. In the former case, averaging lengths of some
fraction of the period of the underlying cycle would
capture much of the available signal. The latter case
could result from a gradual warming or cooling trend,
and the optimal averaging period would reflect a com-
promise between the strength of the trend (the most
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recent years should be the most representative of the
next year) and the level of random variation around the
trend (a longer averaging period would be required to
smooth the noise around the trend).

The results of a preliminary look at this question are
presented in Fig. 5. For the four standard climatological
seasons, linear regressions were fit to each of the 344
divisional temperature series using the year as the in-
dependent variable. The data used in these regressions
were the 33 years 1961-1993 plus the number of years
specified as the OCN averaging period for each divi-
sion according to the COR,(k) criterion. That is, the
regression for each division was computed over the n
= 33 + k years beginning in 1961-k and ending in
1993. The vertical axes in the panels of Fig. 5 are the
slope estimates for these regressions divided by the
standard errors of those estimates, that is, the z-ratios.
The #-ratios thus express the trade-off between trend
strength (absolute value of the slope) and the scatter
of points around the slope since the standard error of
the slope estimate is proportional to the overall regres-
sion mean-squared error (see, e.g., Draper and Smith
1981). The horizontal axes in Fig. S5 are the corre-
sponding values for COR,(k), with the dashed vertical
lines indicating significance levels for local tests taken
from Table 1a. Corresponding results for MSE *(k) are
comparable but somewhat less distinct. The spatial dis-
tributions of these significance levels are broadly com-
parable to those in Fig. 2, showing results for local test
significance using the MSE *(k) criterion, because the
divisions generally exhibit comparable local signifi-
cance levels for either of the two test statistics.

In all five panels of Fig. 5, low values of COR, (k)
are associated with f-ratios near zero, indicating that
any linear trends through time are small relative to
shorter-period variations. In Fig. 5a, most locations ex-
hibiting significant results for temperature according to
COR;, (k) in spring are associated with relatively large
and positive t-ratios, suggesting that the apparently
good OCN specifications for these developmental data
result from a long-term warming trend. Similarly, most
of the divisions with locally significant values for tem-
perature in fall (primarily the north-central and north-
eastern locations in Fig. 2¢) are associated with gradual
cooling, although a few points (south Florida and the
desert southwest) have high correlations associated
with warming trends. (Note, however, that the spatial
pattern in Fig. 2c does not achieve field significance.)
The results for winter temperatures in Fig. 5d again
indicate that most of the significant local values of
COR; (k) are associated with temperature trends. Most
of these are increasing temperature trends, although the
divisions on the southwestern edge of the region of
locally significant tests shown in Fig. 2d (generally the
lower Mississippi Valley) appear to support OCN pre-
dictability as a result of gradually cooling winter tem-
peratures.
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FIG. 5. Regression slopes normalized by their standard errors (z-ratios) as functions of local
COR;(k) values for (a) spring, (b) summer, (c) fall, and (d) winter seasonal temperature forecasts;
and (e) fall precipitation forecasts. Local significance levels from Table 1a are indicated by dashed
vertical lines. Significant local tests associated with large absolute z-values indicate that OCN
predictability results primarily from the existence of long-term trends.

The results for summer temperatures in Fig. 5b are
qualitatively different, in that an appreciable fraction
of significant local tests are associated with weak
slopes, as indicated by relatively small z-ratios. Signif-
icant local tests associated with large positive t-ratios
in Fig. 5b are located primarily in the west and south-
east; while divisions having large COR, (k) and cooling
are located mainly south of Lakes Erie and Ontario and
in the center of the country. The remaining divisions
with significant local tests in summer exhibit long-term
temperature trends that are small in relation to shorter-
period variations. Here the large values of COR,(k)
suggest that the year to year temperature variations
contain some predictive information.

Finally, Fig. Se shows the results of the same anal-
ysis applies to the fall precipitation series. Here the
nominal significance levels have again been taken from
Table 1a, although these are approximate for the pre-
cipitation data. The precipitation results are more
equivocal than those for temperature but indicate a ten-
dency for significant OCN precipitation predictability
to be associated with local climates becoming gradually
wetter.

6. Operational modifications

It is noted in HVB that the use of separately fitted
averaging intervals for each location and season leads
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to operational difficulties. In particular, use of very dif-
ferent averaging periods for spatially or temporally ad-
jacent forecasts leads to sharp gradients in the forecast
fields, the short space scales or timescales of which are
difficult to justify or accept.

Noting that forecast performance does not depend
strongly on the averaging period for other than small £
(see also Dixon and Shulman 1984; Sabin and Shulman
1985), HVB address this operational complication by
finding the value of X maximizing forecast performance
when averaged over all seasons and all climate divi-
sions and conclude that k = 10 provides this maximum
for seasonal temperature forecasts. While conducted
using a very large dataset, this is another blind search-
ing procedure, and as such is potentially subject to mul-
tiplicity problems of the kind discussed with respect to
local OCN fitting in section 3. Its validity is also subject
to investigation through methods similar to those used
in sections 3 and 4.

Figure 6a shows values of COR, (k) (symbol ‘“1°’),
COR; (k) (symbol ‘2’), and MSE*(k) (symbol
““M’’), averaged (area weighted) over all climate di-
visions and over the 12 three-month seasons as func-
tions of the averaging period. The three labels locate
the value £k = 15, which maximizes [minimizes, for
MSE*(k)] these averages. The curve for COR, (k)
shows some differences in magnitude and shape from
that presented by HVB; which probably results from
area weighting and, to a lesser extent, from the use of
all 344 divisions here. While best performance appears
to occur for k = 15, nearly comparable local optima
occur at k = 10 and 1‘1 and k = 25, which result is also
consistent with those obtained by HVB.

The statistical significance of the apparent optima at
k = 15 in Fig. 6a can be evaluated using a procedure
similar to that used in section 4. Here the time ordering
of underlying data is repeatedly (10 000 times) shuf-
fled, while preserving both the spatial structure of the
data in a given season and the membership of each of
the 12-month seasons within a given year. That is, there
are i = 63 individual data objects, each consisting of
344 spatial dimensions and 12 seasonal dimensions,
and 10 000 of the possible 63! permutations of these
are randomly selected. For each permutation, the per-
formance of each of the three measures COR,(k),
COR,(k), and MSE*(k) is determined for all values
of k between 1 and 30 for each location and season and
then averaged over the seasons and (with area weights)
locations. The value of the best averaged performance
statistic for each permutation, regardless of the value
of k that produced it, is then saved as a contribution to
its respective null distribution.

The critical levels for the best of 30 possible aver-
aging periods are indicated in Fig. 6a using line
weights. The heaviest lines indicate significance at the
1% level, the medium solid lines indicate significance
at the 5% level, the thin black lines indicate significance
at the 10% level, and the thin gray lines show the range

WILKS

837

@
k-

@«
+

8

 CORy (K. CORp(K)
&

3

40

Averaging period, k Averaging period, k

FiG. 6. Area-weighted average values of COR,(k), COR(k), and
MSE*(k) as a function of the averaging period, &, for seasonal tem-
perature forecasts. Line weights indicate statistical significance of the
results for the averaging period yielding best performance (located
by the symbols 1, 2, and M, respectively): heavy solid lines, p < 0.01;
medium solid lines, 0.01 < p < 0.05; light solid lines, 0.05 < p
=< 0.10; faint lines, p > 0.10. (a) Averages over all divisions and
seasons, (b) averages over only those divisions and seasons for which
local tests were significant at the 5% level.

of values not significant at even the 10% level. Note
that these values pertain to the single best performance
of the 30 possible averaging periods and thus are con-
servative test levels for, say, the second- and third-best
values. For all three of the performance measures, the
best values at k = 15 are better than would be expected
by chance at better than the 1% level (actually, better
than the 0.1% level), as are the secondary optima at k
= 10 and 11 and k = 24 and 25.

Results in section 2 indicate that there are large areas
in the United States over which OCN forecasts for par-
ticular seasons show no significant skill. Including
these areas in the search for a “‘globally’’ optimal &
would thus seem to dilute any predictive signal that
may be present and/or produce biased specifications.
Figure 6b shows the results of a search similar to that
represented in Fig. 6a, except that only local values of
the performance measures that are significant at the 5%
level are included in the averages. There is again sub-
stantial agreement among the resulting best ‘‘global”’
averaging periods for the three measures COR,(k),
COR,(k), and MSE*(k), which yield k = 6, k = 4,
and k = 4, respectively. Of course the magnitudes of
the results in Fig. 5b are substantially higher [lower,
for MSE*(k)] than in Fig. 6a because values not sat-
isfying local statistical significance are not included in
the averages.

Statistical significance of the three optima located by
the symbols “‘1,”” ““2,”” and ‘“‘M”’ in Fig. 6b is com-
puted in the same was as described above with respect
to Fig. 6a, except that the averages comprising the re-
spective null distributions are comprised only of those
local values in each shuffled data series that are nom-
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inally significant at the 5% level. Line weights indi-
cating the significance levels are the same as those used
in Fig. 6a, with the maximum of COR,(6) being sig-
nificant at the 5% level (p = 0.017), the maximum of
COR,(4) being significant at the 10% level (p
= 0.061), and the minimum of MSE*(4) being sig-
nificant at the 5% level (p = 0.038). These results in
Fig. 6b also agree that the search for a global averaging
period produces valid results for the seasonal temper-
ature forecasts. The choices for best averaging period
are reasonably consistent among the three forecast per-
forrnance measures but are quite different from those
indicated in Fig. Sa.

Figure 7 presents the corresponding analyses for the
seasonal precipitation forecasts. When all climate di-
visions and seasons are averaged (Fig. 7a), the corre-
lation measures indicate maxima for short averaging
times (k = 2 and k = 4) and other maxima near k = 15
and k = 27. All three of these are statistically significant
at the 5% level for the COR, (k) measure, while the
maximum for COR,(2) achieves significance only at
the 10% level (p = 0.082). The best result for the
MSE*(k) statistic is for k¥ = 29 and is not significantly
better than could be expected by chance. These results
are considerably weaker than those for the seasonal
temperature forecasts in Fig. 6a and provide little sup-
port for the estimation of a ‘‘global optimum’’ aver-
aging period, at least in the way being evaluated here.
Figure 7b provides the seasonal precipitation forecast
results for averages taken only over divisions and sea-
sons for which local tests are significant at the 10%
level. None of the three maxima are significant even at
the 10% level, further indicating that there is little
promise in this approach for seasonal precipitation
forecasts.

7. Summary and conclusions

Two multiplicity problems arise in the evaluation of
OCNs at many locations over a large area such as the
United States, using only dependent data. First, the fit-
ting procedure is allowed to choose the best averaging
period, among many, over which to calculate the OCNs
for a given location. The resulting averaging period will
thus be “‘tuned’’ to some extent to the random sampling
variations of the data series at hand. Second, simulta-
neous comparison of the performance of the OCNs
over a network of locations will yield apparently pos-
itive results by chance for some locations, even if the
forecasts possess no real predictive skill. This second
problem is of particular concern because choosing the
best of 30 averaging periods at each location enhances
the magnitude of dependent-sample artificial skill and
because the spatial correlation of the data will tend to
produce spatially coherent regions exhibiting that arti-
ficial skill.

The extent to which the apparent predictive capacity
of seasonal and monthly OCN hindcasts of temperature
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FiG. 7. As Fig. 6, for seasonal precipitation. Averages in (b) are
over divisions and seasons for which local tests were significant at
the 10% level.

and precipitation is larger than would be expected by
chance has been examined here using nonparametric
hypothesis tests. At the local level, the sampling dis-
tributions of several forecast performance statistics un-
der the null hypothesis were constructed by repeatedly
reordering the data. Values of these performance sta-
tistics computed from the actual data that are better than
all but a small proportion of those computed for the
random series are judged to be sufficiently good that
they are unlikely to have occurred by chance.

The field significance of these local tests was ap-
proached in the same way, by reordering the underlying
fields consisting of data at 344 individual climate di-
visions and computing the areas exhibiting nominally
significant local tests. Field significance results for sea-
sonal temperature forecasts indicate strongly that, with
the exception of the fall and early winter seasons SON
through NDJ, significant local skill is sufficiently wide-
spread that it is unlikely to have occurred by chance.
Significant results for seasonal precipitation are much
less widespread in space and convincingly achieve field
significance only for SON and OND. Results for
monthly temperature forecasts are somewhat better
than those for seasonal precipitation but less impressive
than those for seasonal temperature. Results for
monthly precipitation forecasts appear to be no better
than would be expected by chance.

Examination of the relationship between OCN per-
formance and temperature trends for four seasons in-
dicates that, in most cases, statistically significant local
OCN specifications result from gradual temperature
changes that can be captured as linear trends in regres-
sion analyses. However, a substantial number of locally
significant tests for summer occur in the absence of
such a trend, suggesting that, for these, the OCNs are
exploiting shorter-term temperature variations. Of
course, whether these patterns will persist into the com-
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ing decades is an open question that cannot be ad-
dressed by a study of this kind.

Operationally, the use of OCNs presents the problem
that allowing k to vary freely produces highly irregular
forecast fields. The approach proposed by HVB to al-
leviate this problem is to choose a single best averaging
period for all locations and seasons. Appropriately de-
signed significance tests indicate that this approach is
justified for the seasonal temperature forecasts but is
dubious for the seasonal precipitation forecasts.

The significance testing approach adopted here is
less than ideal but has been resorted to because cross
validation does not seem practicable given the available
data. The testing framework does allow identification
of levels of local forecast performance that are too great
to have plausibly arisen by chance and provides reas-
surance that many of the spatial patterns of significant
forecast performance are unlikely to have resulted only
from sampling variations. However, this analysis does
not yield estimates of those forecast performance mea-
sures that could be expected for independent (i.e., fu-
ture) data. Rather, the critical values used here (e.g.,
in Table 1a) are better than can be expected for fore-
casts of future independent data, precisely because they
have been constructed to reproduce the factors that lead
to artificial skill for hindcasts. On the other hand, the
critical values in Table 1b, which are based on ran-
domly chosen averaging periods, are probably overly
conservative. Respective pairs of values in Tables la
and 1b might be expected to bracket future forecast
performance.

The performance of the OCN temperature and pre-
cipitation forecasts is significantly better than that of
30-yr climate normals for some times and places but is
quite modest overall. Even so, however, it is likely to
remain a viable contribution to these difficult forecasts
for the near future.
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